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User-based KNN recommender systems (UserKNN ) utilize the rating data of a target user’s k nearest

neighbors in the recommendation process. This, however, increases the privacy risk of the neighbors,

since the recommendations could expose the neighbors’ rating data to other users or malicious parties.

To reduce this risk, existing work applies differential privacy by adding randomness to the neighbors’

ratings, which unfortunately reduces the accuracy of UserKNN. In this work, we introduce ReuseKNN,

a novel differentially private KNN-based recommender system. The main idea is to identify small but

highly reusable neighborhoods so that (i) only a minimal set of users requires protection with differential

privacy and (ii) most users do not need to be protected with differential privacy since they are only rarely

exploited as neighbors. In our experiments on five diverse datasets, we make two key observations. Firstly,

ReuseKNN requires significantly smaller neighborhoods and, thus, fewer neighbors need to be protected

with differential privacy compared with traditional UserKNN. Secondly, despite the small neighborhoods,

ReuseKNN outperforms UserKNN and a fully differentially private approach in terms of accuracy. Overall,

ReuseKNN leads to significantly less privacy risk for users than in the case of UserKNN.
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1 INTRODUCTION

Recommender systems often rely on neighborhood-based collaborative filtering [30] to generate
recommendations. These systems can intuitively justify their recommendations to the target user
and also efficiently incorporate new rating data from users, which are two key issues ofmodern rec-
ommender systems [16]. For example, user-basedKNN, i.e., UserKNN, is a variant of neighborhood-
based collaborative filtering that utilizes the rating data of the k nearest neighbors of a target user
to process a rating query. A rating query is a request to a recommender system to predict a rat-
ing for a target user to a target item. However, the way in which rating queries are processed by
UserKNN can increase the privacy risk of users since the estimated rating scores, which determine
whether an item will be recommended, are generated based on rating data of users that are used
as neighbors. In this regard, existing research [9, 49, 64] finds that these neighbors are susceptible
to multiple privacy risks, such as the inference of their private rating data (see Section 3). To mit-
igate that privacy risk, several works [10, 24, 65] use differential privacy (DP) [18, 20] to protect
users’ rating data by adding a degree of randomness to the data. However, the added randomness
typically leads to severe drops in recommendation accuracy [7].
To address this problem, we introduce ReuseKNN, a novel differentially private KNN-based rec-

ommender system that reduces the number of neighbors to which differential privacy needs to be
applied. Intuitively, instead of utilizing new users as neighbors for processing new rating queries,
ReuseKNN reuses useful neighbors from past rating queries. Hence, ReuseKNN constructs small
but highly reusable neighborhoods for every target user by fostering the neighbors’ reusability for
many rating queries. With this, as illustrated in Figure 1, ReuseKNN minimizes the set of users that
need to be protected with DP—we call them “vulnerable users”. Plus, most users do not need to
be protected with DP, as their rating data is only rarely used in the recommendation process—we
call them “secure users”. As shown, we also introduce a data usage threshold τ , i.e., a hyperparam-
eter that allows adjusting the maximum data usage for a user to be treated as secure. In this way,
we leave it to the recommender system provider to specify what degree of data usage is tolerated
despite the resulting privacy risks and which users need to be protected.
We evaluate the proposed approach in a two-stage procedure: (i) neighborhood reuse only, i.e.,

ReuseKNN, and (ii) neighborhood reuse with DP, i.e., ReuseKNNDP . In the first stage, ReuseKNN
does not use DP at all. With this, we focus on how neighborhood reuse can increase the reusability
of neighbors and preserve UserKNN ’s recommendation accuracy. In the second stage, we combine
ReuseKNN with DP, i.e., ReuseKNNDP , to protect vulnerable users with DP. This allows the in-
vestigation of how ReuseKNNDP can mitigate all users’ privacy risk while generating accurate
recommendations. We evaluate ReuseKNN and ReuseKNNDP on five different datasets:MovieLens

1M,Douban, LastFM, Ciao, andGoodreads. Plus, we compare ReuseKNN and ReuseKNNDP with five
KNN-based baselines that utilize DP (e.g., [65]) and the concept of neighborhood reuse in different
ways with respect to recommendation accuracy and users’ privacy risk. Additionally, the nature of
neighborhood reuse may raise concerns that the generated recommendations are biased towards
items consumed by many users, i.e., popular items. Thus, we investigate whether the proposed
approach is more or less prone to item popularity bias than the baselines.
Our results indicate that ReuseKNN yields significantly smaller neighborhoods than traditional

UserKNN. Despite the smaller neighborhoods, ReuseKNN and ReuseKNNDP outperform our base-
lines in terms of recommendation accuracy. Moreover, ReuseKNNDP leads to significantly less
privacy risk for users than UserKNN with DP. Also, the proposed approach does not increase item
popularity bias. Overall, the three main contributions of this article are as follows:

(1) We present a novel ReuseKNN recommender system and compare two neighborhood
reuse strategies to substantially foster the reusability of a target user’s neighborhood and
effectively reduce the number of vulnerable users.
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Fig. 1. Schematic illustration of the data usage (i.e., how often a user is used as a neighbor) distribution of
traditional UserKNN and the proposed ReuseKNN recommender system. ReuseKNN increases the number
of secure users (green, no differential privacy needed) and decreases the number of vulnerable users (red,
differential privacy needs to be applied) compared with UserKNN. The dashed line illustrates the data usage
threshold τ , a hyperparameter for adjusting the maximum data usage for a user to be treated as secure.

(2) We combine ReuseKNN with DP to realize ReuseKNNDP and show that ReuseKNNDP

improves recommendation accuracy over KNN- and DP-based baselines and, at the same
time, does not increase item popularity bias.

(3) We show that ReuseKNNDP leads to significantly less privacy risk, since most users
are rarely exploited in the recommendation process and only the remaining users, i.e.,
vulnerable users, are protected with DP.

Our work illustrates how to address privacy risks in KNN-based recommender systems through
neighborhood reuse combined with DP. While the proposed approach focuses on traditional KNN,
we additionally demonstrate the generalizability of the neighborhood reuse principle to user and
item embeddings created by state-of-the-art neural collaborative filtering approaches [29].

2 RELATEDWORK

We describe two research strands related to our work: (i) studies on the identification and quantifi-
cation of users’ privacy risks in recommender systems and (ii) privacy-aware recommender sys-
tems that mitigate users’ privacy risks. Since ReuseKNN is a differentially private and KNN-based
recommender system, we emphasize KNN-based methods when reviewing privacy risks in recom-
mender systems as well as DP when reviewing privacy-preserving technologies for recommender
systems. Also, we focus on the privacy risks that arise from the recommendations presented to
potentially malicious target users. This can harm the neighbors used in the recommendation
process.

2.1 Privacy Risks in Recommender Systems

Previous research [5, 23, 36, 49] describes many severe privacy risks for users of recommender
systems. For example, according to Ramakrishnan et al. [49], the use of neighbors’ rating
data in the recommendation process can pose a privacy risk to the neighbors. Serendipitous
recommendations could reveal unique connections between neighbors and items. In this way,
the rating data of the neighbors can be uncovered or the neighbors’ identities can be revealed
within the recommendation database. Also, Zhang et al. [64] show that it could be possible to
identify users whose data was used in the recommendation process. Their results suggest that the
effectiveness of their attack depends on the number of generated recommendations. Moreover,
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Calandrino et al. [9] propose to generate fake users, i.e., sybils, based on limited knowledge of a
victim’s data. These sybils can isolate the victim that is utilized as a neighbor and compromise its
privacy.
To quantify users’ privacy risks in computational systems such as recommender systems, several

privacy riskmetrics [13, 17, 42, 53, 56] have been proposed. Thesemetrics often rely on the sensitiv-
ity of users’ data, i.e., how strong this data puts users’ privacy at risk. For example, Chen et al. [13]
detect correlations within the dataset to measure whether a piece of data could reveal personal
information about the users. Srivastava and Geethakumari [53] measure the relative sensitivity of
a single piece of data compared with the remaining data of a user. Similarly, Domingo-Ferrer [17]
relates the overall sensitivity of a user’s data to the sensitivity of other users’ data. Liu and Terzi’s
privacy score [42] weighs the sensitivity with the degree of visibility of a user’s data (i.e., how often
a user’s data is utilized in the recommendation process).
Evaluating the privacy risk of users based on attacks only measures the privacy risk with respect

to the specific attack scenario. Liu and Terzi’s metric measures users’ privacy risk independent of
specific attack scenarios and, thus, allows investigating privacy risk in a recommender system at
a more general level. Therefore, in our work, we utilize Liu and Terzi’s metric to measure users’
privacy risk in a general neighborhood-based recommendation scenario. Furthermore, we assume
that all pieces of data are equally sensitive, since sensitivity typically depends on the application
and the user’s perception of privacy [38].

2.2 Privacy-Aware Recommender Systems

Several works [33, 55, 63] mitigate users’ privacy risks by applying homomorphic encryption [25]
to users’ rating data. Here, recommendations are generated based on the encrypted rating data,
and, thus, users’ rating data remains protected in the recommendation process. Homomorphic
encryption, however, has high computational complexity. Thus, Tang and Wang [55] apply homo-
morphic encryption on the rating data of a target users’ friends only, i.e., a small subset of users,
to improve computational efficiency. Besides homomorphic encryption, federated learning [44]
is used to lower users’ privacy risks [27, 41, 48, 60]. Specifically, instead of a user’s rating data,
the parameters of the user’s local recommendation model are utilized in the recommendation
process. For example, Perifanis and Efraimidis [48] combine federated learning with neural
collaborative filtering [29] to improve privacy. However, since federated learning could still leak
user data [47, 50], research proposes to learn a user’s local model by utilizing only a subset of
the rating data [4, 14, 46]. Moreover, differential privacy (DP) [18, 20] has been leveraged for
collaborative filtering recommender systems [10–12, 24, 60, 65]. These techniques add randomness
to users’ data to hide the actual data. Therefore, they face a trade-off between accuracy and
privacy (e.g., [7]). To address this trade-off, Xin and Jaakkola [61] assume a moderate number of
public users who tolerate disclosing their rating data. With this unprotected rating data, recom-
mendation accuracy can be preserved while the privacy requirements of the remaining users are
respected.
It has been shown in several studies [1, 39, 43] that users often receive more recommendations

for popular items, and correspondingly non-popular items receive less exposure. This behavior
of recommender systems, which is referred to as popularity bias, leads to disparate, i.e., unfair,
treatment of less popular items. Dwork et al. [19] and Zemel et al. [62] show that, formally, there
is a close connection between fairness and DP. However, the sole application of DP is insufficient
to ensure fairness due to correlations within the dataset [21]. Moreover, Ekstrand et al. [21] and
Agarwal [3] highlight a trade-off between user privacy and fairness. Overall, related work suggests
that DP can severely impact recommendations in different ways, for example, result in popularity
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Table 1. Overview of the Notation Used in this Article

Symbol Description
k Number of neighbors to process a rating query for target user u and target item i .
Qu Rating queries for target user u, i.e., the items in u’s test set Rtestu .

Rk User-based KNN recommender system utilizing k neighbors to predict ratings.

Rk (u, i ) Estimated rating score for target user u and target item i by recommender system Rk .
Rktop (u) Items with the highest estimated rating score for target user u.

ru,i Rating score of user u to item i .
U The set of users.
Ui The set of users that rated item i .
I The set of items.
Iu The set of items rated by user u.
R The set of ratings.

N k
u,i The k nearest neighbors for target user u and target item i .

Nu,i Neighbors of target user u and rated item i .
Nu The set of neighbors for target user u across all rating queries.

N
(q )
u The set of neighbors for target user u across q rating queries.

sim(u,n) Similarity score between target user u and neighbor n.
reusability (c |u) Reusability score of candidate neighbor c for target user u.
rankinд(·) The ranking function that ranks candidate neighbors w.r.t. similarity and reusability.
τ Data usage threshold, i.e., the maximal usage of a user’s data that is tolerated.
mDP Differential privacy mechanism that utilizes plausible deniability.
ϵ Privacy parameter.
S Secure users that do not need to be protected with DP.
V Vulnerable users that need to be protected with DP.
RS Rating data of secure users.
R̃V DP-protected rating data of vulnerable users.
α Significance level used for the statistical tests.
σx Sample standard deviation of variable x .
σx,y Sample covariance of variables x and y.

bias. Therefore, we believe that it is important to evaluate the proposed approach, ReuseKNN, also
in terms of item popularity bias.
Similar to our work, previous research by Zhu et al. [65] prevents the inference of neighbors’

rating data by applying DP to the users’ rating data in UserKNN. However, to preserve recommen-
dation accuracy, Zhu et al. vary the degree of randomness that is added to all users’ rating data
based on the sensitivity of the data. In contrast, ReuseKNN preserves recommendation accuracy
by adding randomness only where it is necessary, i.e., to vulnerable users with a high privacy risk.
In the remainder of the article, we use a variant of the approach of Zhu et al. that is comparable to

the proposed approach as baseline (i.e., UserKNN
f ull

DP
) for our experiments.

3 PROBLEM DEFINITION

In the following, we discuss one key vulnerability of UserKNN, which poses privacy risks to the
neighbors utilized in the recommendation process. Also, we precisely model the adversary’s goal,
i.e., the inference of the neighbors’ rating data. A summary of the notation used in this article is
given in Table 1.

3.1 Vulnerability Analysis of UserKNN

Typically, a user-basedKNN recommender systemRk , i.e.,UserKNN, generates an estimated rating
score for a rating query of a target user u and a target item i by utilizing the ratings of k other
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users that have rated i , i.e., the k nearest neighbors N k
u,i :

Rk (u, i ) =
∑

n∈N k
u,i

sim(u,n) · rn,i
∑

n∈N k
u,i

sim(u,n)
, (1)

where sim(u,n) is the similarity between target user u and neighbor n, commonly determined via
Pearson’s correlation coefficient [6] or Cosine similarity between the users’ rating vectors. For
UserKNN, the neighborhood N k

u,i used for generating recommendations for target user u and item
i , comprises the k most similar neighbors:

N k
u,i =

k
argmax
c ∈Ui

sim(u, c ), (2)

whereUi are all users that have rated i and sim is the similarity metric. UserKNN utilizes the rating
data of the target user’sk nearest neighbors to generate an estimated rating score (see Equation (1)).
Therefore, the estimated rating score Rk (u, i ) for target useru and item i is linked to the neighbors’
rating data. Through learning the behavior of UserKNN, the estimated rating score could reveal the
rating data of users that have been used as neighbors [9]. Therefore, the privacy threat for users
can be traced back to them being utilized as neighbors in the recommendation process.

3.2 Attack Model

In this work, we assume that a user with malicious intent, i.e., the adversary a, exploits the
vulnerability above via querying estimated rating scores from the recommender system, i.e.,
Rk (a) = {Rk (a, i1),Rk (a, i2), . . . ,Rk (a, il )}, where Rk (a, i j ) is the estimated rating score for item
i j ∈ Qa and Qa is the set of a’s queries. The adversary a can target a specific user n by increasing
the likelihood of n being used as neighbor. To achieve this, a would modify its own user profile Ra
such that it (partially) matches n’s profile. Moreover, a can exploit publicly available data P , e.g.,
public rating data, product reviews, tweets, or lists of similar items, to better learn the behavior of
UserKNN [9]. Given these assumptions, the adversary aims to infer the rating data of a neighbor
n used to generate the estimated rating scores:

Pr [rn,i1 , rn,i2 , . . . , rn,il |Rk (a, i1),Rk (a, i2), . . . ,Rk (a, il ), P ∪ Ra], (3)

where rn,i j is the rating score of neighbor n for item i j . Note that if a user is used as neighbor for
many rating queries, many ratings could be targeted by an adversary. Thus, the degree to which
a user’s rating data is used in the recommendation process is an important indicator of this user’s
privacy risk (see the DataUsage@k metric in Section 5.2.3).
Given this attack model, the privacy threat lies on the rating level, i.e., the inference of neigh-

bors’ rating scores. Therefore, our approach aims at protecting the neighbors’ rating scores. In the
remainder of this work, we evaluate our approach in a rating-prediction task, since this fits well
to our problem statement above (see Appendix B for results of a ranking-based experiment).

4 APPROACH

In the following, we first schematically illustrate UserKNN ’s and ReuseKNN ’s recommendation
process based on an illustrative example. Then, we outline the two neighborhood reuse strate-
gies of the ReuseKNN recommender system (Section 4.2). Finally, we present ReuseKNNDP , i.e.,
neighborhood reuse with differential privacy (DP) (Section 4.3).

4.1 Example of the Recommendation Process in UserKNN and ReuseKNN

Figure 2 provides a schematic illustration of UserKNN ’s and ReuseKNN ’s recommendation process,
showing the interplay between a user’s data usage and the user’s privacy risk. For simplicity, we
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Fig. 2. Schematic illustration of the recommendation process for three rating queries in Alice’s query set
QAlice for UserKNN and ReuseKNN. A green shaded item indicates that the rating score for this item is
estimated for the target user and a red shaded item indicates that the rating score of a neighbor has been
utilized for the rating estimation. TraditionalUserKNN selects those users as neighbors that rated the queried
item and have the highest similarity value; in this toy example, those are Bob and Amy. Thus, Bob and Amy
are vulnerable and need to be protected with DP. In contrast, ReuseKNN utilizes Tim as neighbor. As such,
ReuseKNN substantially increases reusability (5.15 instead of 1.2 and 0.74) at the price of a slightly reduced
similarity (0.90 instead of 0.98 and 0.97). This way, only Tim is vulnerable and is the only neighbor that needs
to be protected with DP, as Bob and Amy remain unused.

assume that Bob, Amy, and Tim have been used as neighbors for τ rating queries, i.e., data usage
and privacy risk is τ . To process Alice’s rating queries for items il and im , UserKNN selects Bob and
Amy as neighbors, as they have the highest similarity values across all users that rated the queried
items. Due to the usage of Bob’s and Amy’s data, their data usage exceeds threshold τ and DP
needs to be applied. For the rating query for item in , again, Amy is utilized in the recommendation
process. Since she is already protected with DP, her privacy risk remains at τ . This is different from
how ReuseKNN processes rating queries. For the rating queries for items il , im , and in , ReuseKNN
selects Tim as neighbor, as Tim has a substantially higher reusability value and only marginally
smaller similarity than Bob and Amy. Therefore, only Tim’s data usage exceeds τ , and DP is needed
to protect Tim.
In summary, in this illustrative example, UserKNN leads to two vulnerable users, Bob and Amy,

that need to be protected with DP. In contrast, ReuseKNN leads to only one vulnerable user, Tim,
to which DP has to be applied.

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 5, Article 80. Publication date: August 2023.
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4.2 ReuseKNN

The key feature of ReuseKNN is to reuse neighbors from a target user u’s previous rating queries
to minimize the cardinality of the neighborhood Nu =

⋃
i ∈Qu

N k
u,i across all rating queriesQu . As

illustrated in Figure 1, this means that ReuseKNN decreases the data usage for most users, i.e., se-
cure users, and in this way, also their privacy risk. Plus, ReuseKNN decreases the number of highly
reused neighbors, i.e., vulnerable users with high data utilization and, thus, high privacy risk.
In addition to the similarity, ReuseKNN also considers the extent to which a target user u could

reuse candidate neighbor c as a neighbor for many rating queries, i.e., reusability (c |u). Since both
similarity and reusability scores are differently distributed across their respective numeric ranges,
we rank candidate neighbors according to their scores. Formally, for a useru, the rank rankinд(u) =
|{v ∈ U \ {u} : f (v ) ≤ f (u)}|, where U is the set of all users and f measures the similarity or
reusability score. Note that rankinд(u) > rankinд(v ) if f (u) > f (v ) for users u and v , and that
rankinд(u) = rankinд(v ) in case f (u) = f (v ). With this, the k neighbors N k

u,i are selected based
on similarity and reusability. Formally:

N k
u,i =

k
argmax
c ∈Ui

[rankinд(sim(u, c )) + rankinд(reusability (c |u))], (4)

where Ui are all users that rated item i , sim measures the similarity between two users, and
reusability depends on the given neighborhood reuse strategy of ReuseKNN. In the case in which
multiple candidate neighbors have equal values for rankinд(sim(u, c ))+rankinд(reusability (c |u)),
we choose these neighbors at random.

To estimate a candidate neighbor’s reusability score, ReuseKNN utilizes two neighborhood
reuse strategies: Expect and Gain. The unpersonalized Expect strategy measures a candidate neigh-
bor’s reusability for an average target user, whereas the personalized Gain strategy measures the
reusability for a specific target user. Next, we discuss two strategies to increase the reusability of
a target user’s neighbors: unpersonalized and personalized neighborhood reuse.

Unpersonalized Neighborhood Reuse: Expect. The more users rated an item, the more likely it is that
a random target user will query a rating estimation for this item. Following this intuition, Expect
promotes candidate neighbors that rated many popular items and penalizes candidate neighbors
that either rated only a few items or many unpopular items. For Expect, the reusability score of
candidate neighbor c is defined by

reusability (c |u) = reusability (c ) =
∑
i ∈Ic

|Ui |
|U | , (5)

where u is the target user, Ic are the items c rated, Ui are the users that rated an item i , and U is
the set of all users. In this case, reusability (c ) is the summed-up popularity of c’s rated items and
measures the expected number of a random user’s rating queries for which c could be used as a
neighbor. This means that the reusability of a candidate neighbor is estimated for an average user
and not for a specific target user (i.e., unpersonalized).

Personalized Neighborhood Reuse: Gain. In contrast to unpersonalized neighborhood reuse, Gain
measures a candidate neighbor’s reusability for a specific target user. Specifically, Gain quantifies
how many of a target user’s ratings a candidate neighbor could have covered in the past, i.e., how
many ratings the target user could have gained from the candidate neighbor. Thus, Gain gives
the fraction of a target user u’s rated items for which a candidate neighbor c could have served as
a neighbor:

reusability (c |u) = |Iu ∩ Ic ||Iu | , (6)
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where Iu are the items rated by u and Ic are the items rated by c . In contrast to the unpersonalized
Expect strategy, Gain’s reusability score depends on a specific target user (i.e., personalized).

4.3 ReuseKNNDP : Neighborhood Reuse and Differential Privacy

ReuseKNN leads to a minimal number of highly reused neighbors, i.e., vulnerable users, who are
utilized more often as neighbors than the data usage threshold τ would allow. ReuseKNNDP ad-
dresses this high privacy risk resulting from the frequent usage of vulnerable users (see Section 3)
by adding DP to our neighborhood reuse strategies. Specifically, for a rating query for user u and
item i , a privacy mechanismmDP is applied to the ratings for i of vulnerable usersV that are used

as neighbors, i.e., R̃V = {mDP (rn,i ) : n ∈ N k
u,i ∩V }. In this way, ReuseKNNDP utilizes real ratings

of secure users S , i.e., RS = {rn,i : n ∈ N k
u,i ∩ S }, plus the modified ratings R̃V of vulnerable users,

to generate the estimated rating score Rk (u, i ):

Rk (u, i ) =
∑

n∈N k
u,i∩S sim(u,n) · rn,i +∑n∈N k

u,i∩V sim(u,n) ·mDP (rn,i )
∑

n∈N k
u,i

sim(u,n)
. (7)

Specifically, the privacy mechanism mDP utilizes randomized responses [59] to achieve DP [20].
With this, intuitively, neighbors can plausibly deny that their real rating was used in the recom-
mendation process. The privacy mechanism mDP flips a fair coin and if the coin is heads, the
vulnerable neighbor’s real rating is utilized in the recommendation process. If the coin is tails,
mDP flips a second fair coin to decide whether to utilize the vulnerable neighbor’s real rating
or a random rating drawn from a uniform distribution over the range of ratings. With this, the
adversary is unaware whether the utilized rating is real, or random, which leads to the privacy
guarantees within the DP framework [20]:

Pr [Adversary’s assumption: Real rating | Truth: Real rating]

Pr [Adversary’s assumption: Real rating | Truth: Random rating]
=

0.75

0.25
= 3 ≤ eϵ , (8)

which results in a privacy parameter of ϵ = ln 3. Reconsidering user-based KNN ’s vulnerability
(see Equation (1)), this means that if a neighbor n is considered as vulnerable, the DP-protected
rating is used in the recommendation process instead of the real rating for item i (see Equation (7)).
This impacts the adversary a’s objective (see Equation (3)) of inferring n’s rating data given the
estimated rating scores for whichnwas used as neighbor and its own rating dataRa in combination
with public knowledge P (see Section 3). Since a maximum of τ (i.e., the data usage threshold) real
ratings of n are used by the recommender system, the remaining ratings are DP-protected. Thus,
the adversary is not aware of whether the inferred rating data is the original rating data or random
rating data as generated by themDP mechanism:

Pr [rn,i1 , . . . , rn,iτ ,mDP (rn,iτ+1 ), . . . ,mDP (rn,il ) |Rk (a, i1),Rk (a, i2), . . . ,Rk (a, il ), P ∪ Ra], (9)

where rn,i j is n’s rating for item i j and Rk (a, i j ) is the estimated rating score of i j for adversary a.
Through combining non-DP and DP ratings, ReuseKNNDP yields the following privacy parameter
ϵ for each of a vulnerable user’s, in this case n, utilized ratings (for details, see Appendix A):

ϵ = ln �
�
3 + 4 · Pr [Non-DP rating]

Pr [DP rating]
�
�
. (10)

In this way, ReuseKNNDP combines neighborhood reuse with DP to reduce the number of neigh-
bors to which DP needs to be applied and to ensure privacy. Overall, ReuseKNNDP can use two
neighborhood reuse strategies with DP (for details, see Section 4.2):

(1) ExpectDP : Unpersonalized neighborhood reuse combined with DP
(2) GainDP : Personalized neighborhood reuse combined with DP
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5 EXPERIMENTAL SETUP

We utilize a two-stage evaluation procedure to compare and evaluate the two neighborhood reuse
strategies of (i) ReuseKNN and (ii) ReuseKNNDP :

Neighborhood Reuse without DP: ReuseKNN. In the first stage, we evaluate ReuseKNN without pro-
tecting vulnerable neighbors with DP in order to better understand the advantages and disadvan-
tages of the proposed neighborhood reuse strategies. Hence, we compare Expect and Gain to distill
the impact of neighborhood reuse for recommendations.

Neighborhood Reuse with DP: ReuseKNNDP . In the second stage, we combine ReuseKNN with DP
to protect vulnerable users, i.e., ReuseKNNDP . We compare our neighborhood reuse strategies
ExpectDP andGainDP to investigate how ReuseKNNDP can address the accuracy–privacy trade-off.

5.1 Baselines

We compare ReuseKNN and ReuseKNNDP with five different KNN-based baselines. Concretely, for
ReuseKNN, i.e., neighborhood reuse without DP, we use two non-DP baselines:

(1) UserKNN [30]: Traditional UserKNN without neighborhood reuse. No users are protected
with DP (Vulnerable users V = ∅).

(2) UserKNN+Reuse: A variant ofUserKNN with neighborhood reuse. Initially, for the first rating
query, e.g., for item j, the k most similar users that rated j are selected as neighbors, as
in case of UserKNN. However, for the following rating queries, e.g., for item i and user u,
kprev = min{k, |Nu,i |} neighbors from all previous rating queries that rated i (i.e., Nu,i ) are
reused. If too few previous neighbors rated i , i.e.,kprev < k , a minimal set ofknew = k−kprev
new neighbors is additionally used, as given by:

N k
u,i =

kprev

argmax
n∈Nu,i

sim(u, c ) ∪ knew

argmax
c ∈Ui \Nu,i

sim(u, c ), (11)

where Ui are all users that rated item i . Similar to UserKNN, UserKNN+Reuse assumes that
no users are vulnerable (V = ∅). Thus, no users are protected with DP.

For ReuseKNNDP , i.e., neighborhood reuse with DP, we use three DP baselines:

(1) UserKNNDP : A variant of UserKNN, but DP is applied to vulnerable users V = {u ∈ U :
DataUsage@k (u) > τ }. See Section 5.5 for the exact τ values.

(2) UserKNN+ReuseDP : A variant of UserKNN+Reuse, but DP is applied to vulnerable users V =
{u ∈ U : DataUsage@k (u) > τ }. See Section 5.5 for the exact τ values.

(3) UserKNN
f ull

DP
: Traditional differentially private UserKNN, where DP is applied to the full set

of users, i.e.,V = {u ∈ U : DataUsage@k (u) ≥ 0} (similar to the rating perturbation in [65]).

To evaluate ReuseKNNDP , we use the three DP baselines, as well as non-DP UserKNN. With this,

we can compare ReuseKNNDP to two contrastive baselines: UserKNN
f ull

DP
, which protects all users

with DP, and UserKNN, which does not apply DP at all.

5.2 Evaluation Metrics

We test the proposed approach in two evaluation stages using the following evaluation criteria
and metrics (see Table 2 for an overview):

5.2.1 Neighborhood Reuse. To evaluate the degree to which ReuseKNN can reuse neighbors
from previous rating queries, we measure the size of a target user’s neighborhood after multiple
queries. Plus, we study whether the reused neighborhoods are capable of generating meaningful
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Table 2. Overview of the Seven Evaluation Metrics Used in this Work

Evaluation Stage

Evaluation Criterion Evaluation Metric Objective Short Description ReuseKNN ReuseKNNDP

Neighborhood Reuse
Neighbors@q ↘ Neighborhood size •
CoRatings@q ↗ No. of co-rated items •

Accuracy MAE@k ↘ Mean absolute error • •
Privacy

|V | ↘ Percentage of vulnerable users •
PrivacyRisk@k ↘ Privacy risk of users •

Popularity Bias
PP-Corr@k ↘ Positivity–popularity correlation •
Coverage@k ↗ Percentage of item coverage •

↘ indicates that lower values are better and↗ indicates that higher values are better. q is the number of queries and k

is the number of neighbors. With •, we indicate the evaluation stage in which the metric is used.

recommendations via measuring the number of co-rated items between the neighborhood and the
target user.

Neighborhood Size. For every rating query of a target user u, k neighbors are required to generate
the recommendation. In the worst case, no neighbors from previous rating queries can be reused.
Thus, after q queries, |Nu | = min{q · k, |U | − 1} for U being the set of all users. In the best case, u
reuses the same k neighbors for all q queries, i.e., |Nu | = k . To quantify howmany ofu’s neighbors
are reused, we measure the size of u’s neighborhood after q rating queries:

Neighbors@q(u) = ���N
(q )
u

��� , (12)

where N
(q )
u is u’s set of neighbors after q rating queries. With that, we test how well our neigh-

borhood reuse strategies of ReuseKNN, i.e., neighborhood reuse only, can reuse a target user’s
neighbors for multiple rating queries.

Number of Co-Ratings. The utilization of fewer neighbors across many rating queries might
impact the accuracy of recommendations. Therefore, we test whether a target user’s neighbors
are beneficial for recommendation accuracy, i.e., “reliable”. One important characteristic of these
reliable neighbors is the number of co-rated items with the target user [2, 16]. Thus, we measure
the average number of co-rated items between a target user u and its neighbors n ∈ Nu after q
rating queries:

CoRatings@q(u) =
1

|N (q )
u |

∑

n∈N (q )
u

|Iu ∩ In |, (13)

where Iu are the items rated by target user u and In are the items rated by neighbor n. With this,
we test how beneficial the neighborhoods are for generating accurate recommendations.

5.2.2 Accuracy. To quantify the accuracy of a target user’s recommendations, we rely on the
widely used mean absolute error metric (MAE). We use MAE to measure how accurate the rating
scores can be predicted, because of the way in which we apply DP, i.e., via adding noise to the
neighbors’ rating values in order to protect against the disclosure of these ratings (see Section 3).
According to Herlocker et al. [30], the number of neighbors k has an impact on the recommen-
dation accuracy. Thus, we test the accuracy of u’s recommendations for k ∈ {5, 10, 15, 20, 25, 30}.
Therefore, MAE@k (u) quantifies the accuracy of u’s recommendations when k neighbors are
used to generate a recommendation. More formally:

MAE@k (u) =
1

|Rtestu |
∑

ru,i ∈Rtestu

|ru,i − Rk (u, i ) |, (14)
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where the predicted rating score Rk (u, i ) is compared with the real rating scores ru,i ∈ Rtestu in u’s
test set. We note that the items for which Rtestu comprises ratings are the ones that are in u’s set of
rating queriesQu . We use theMAE@k (u)metric for evaluating both, ReuseKNN, i.e., neighborhood
reuse only, and ReuseKNNDP , i.e., neighborhood reuse with DP.

5.2.3 Privacy. Liu and Terzi [42] provide a framework to measure a user’s privacy risk in com-
putational systems, such as recommender systems based on the visibility of the user’s data. In our
work, we relate this visibility to how often a user’s rating data was utilized in the recommendation
process. As such, the DataUsage@k (u) metric counts for how many rating queries a user u was
used as a neighbor. Similar to MAE@k (u), we also relate the usage of u’s data to the number of
neighbors k used to generate recommendations. Formally:

DataUsage@k (u) =
∑
v ∈U

∑
i ∈Qv

1N k
v,i

(u), (15)

where U is the set of all users, Qv is the set of items for which user v queries estimated ratings,
and 1Nv,i (u) is the indicator function of user u being in v’s set of neighbors Nv,i for an item i .

Percentage of Vulnerable Users. As mentioned earlier, the main goal of neighborhood reuse is to
reduce the number of users that need to be protected with DP. The DataUsage@k definition allows
us to identify these vulnerable usersV , i.e., the set of users whose data is utilized more often than
the adjustable privacy risk threshold τ allows:

V = {u ∈ U : DataUsage@k (u) > τ }, (16)

whereU is the set of all users. Thus, the percentage of vulnerable users relates to what fraction of
users DP has to be applied to (i.e., |V |/|U |). We use this metric to evaluate ReuseKNN, i.e., neigh-
borhood reuse only.

Privacy Risk. We apply DP to a user u’s data if DataUsage@k (u) > τ . This way, only the first
τ utilized ratings contribute to u’s privacy risk, since for the remaining ratings that are utilized,
privacy is guaranteed via the DP framework (see Section 4.3):

PrivacyRisk@k (u) = min[τ ,DataUsage@k (u)]. (17)

We use PrivacyRisk@k to measure the users’ privacy risk when neighborhood reuse is combined
with DP, i.e., ReuseKNNDP .

5.2.4 Item Popularity Bias. One might be concerned that neighborhood reuse could lead
to exploiting users as neighbors that rated many popular items, which could result in more
positive estimated rating scores for popular items. To test for this item popularity bias, we
analyze all items for which the recommender system estimates high rating scores, i.e., “top items”.
For a recommender system model R and k neighbors, a user u’s set of top items is given by
Rktop (u) =

n
argmaxi ∈Qu

Rk (u, i ), whereQu are the items inu’s query set. In our case, we set n = 10.

Positivity-Popularity Correlation. To study whether higher estimated rating scores are given to
popular items, we follow Kowald et al. [39] and correlate an item’s popularity with its occurrences
in users’ sets of top items: ItemFreq+@k (i ) =

∑
u ∈U 1Rktop (u ) (i ), where 1Rktop (u ) (i ) indicates

whether item i is in user u’s set of top items Rktop (u). Plus, an item i’s popularity is given by
ItemPop(i) = |Ui |/|U |, whereU is the set of all users andUi are the users that rated i . We compute
the Pearson correlation coefficient [6] between the two variables ItemFreq+ and ItemPop to
identify item popularity bias:

PP-Corr@k =
σItemFreq+@k, ItemPop@k

σItemFreq+@k · σItemPop@k
, (18)
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Table 3. Descriptive Statistics of the Five Datasets

Dataset Domain Rating range |U | |I | |R | |R |/|U | |U |/|I | Density

ML 1M Movies {1. . . 5} 6,040 3,706 1,000,209 165.60 1.6298 4.47%
Douban Movies {1. . . 5} 2,509 39,576 893,575 356.15 0.0634 0.90%
LastFM Music {1. . . 1,000} 3,000 352,805 1,755,361 585.12 0.0085 0.17%
Ciao Movies {1. . . 5} 7,375 105,096 282,619 38.32 0.0702 0.04%
Goodreads Books {1. . . 5} 20,000 508,696 2,569,177 128.46 0.0394 0.03%

|U | is the number of users, |I | is the number of items, |R | is the number of ratings, |R |/ |U | is the ratings-to-users ratio,
|U |/ |I | is the users-to-items ratio, and Density is given by |R |/( |U | · |I |).

where σItemFreq+@k, ItemPop@k is the sample covariance between ItemFreq+@k and ItemPop@k . The
sample standard deviations are given by σItemFreq+@k and σItemPop@k .

Item Coverage. In addition to evaluating the correlation between an item’s estimated rating score
and its popularity, we measure the fraction of items that are a top item for at least one user. For
this, we use the Item Coverage metric [31] given by

Coverage@k =
1

|I |
������

⋃
u ∈U
Rktop (u)

������
, (19)

where k is the number of neighbors, I is the set of items, U is the set of users, and Rktop (u) is
the set of top items for user u. This way, we can test whether parts of the item catalog always
receive low estimated rating scores.We use PP-Corr@k and Coverage@k to evaluate ReuseKNNDP .
Additionally, we use these metrics to evaluate UserKNN to explore the impact of DP [21].

5.3 Datasets

In this work, we conduct experiments on five different datasets: MovieLens 1M (ML 1M) [28],
Douban [34], LastFM User Groups (LastFM) [39], Ciao [26], and Goodreads [57, 58].

All five datasets exhibit different properties, as illustrated in Table 3. For example, the movie
rating datasetML 1M (integer ratings in {1 . . . 5}) is the densest dataset. Similarly, Douban (integer
ratings in {1 . . . 5}) and Ciao (integer ratings in {1 . . . 5}) are movie rating datasets. Moreover, in
Ciao, users have the smallest number of ratings per user (i.e., |R |/|U |) on average. LastFM includes
implicit feedback data (i.e., listening counts) from the online music streaming service Last.fm.
However, in this dataset, Kowald et al. [39] transfer the implicit feedback to decimal ratings in
{1 . . . 1, 000}. Plus, users have the largest number of ratings per users. The book rating dataset
Goodreads (integer ratings in {1 . . . 5}), for which we use a random sample of 20,000 users, is the
largest and least dense dataset.
Overall, the datasets cover (i) the movie, music, and book domain; (ii) implicit and explicit feed-

back; and (iii) different descriptive statistics.

5.4 Evaluation Protocol and Statistical Tests

We perform all experiments using 5-fold cross-validation, and randomly split all folds into 80%
training sets Rtrain and 20% test sets Rtest . The ratings in Rtrain are used to train the recom-
mendation algorithms, and the ratings in Rtest represent the rating queries used for evaluation.
Also, we test the statistical significance of our results. Specifically, after close inspection of our
results, we resort to the Mann-Whitney-U-Test. For the query-based metrics Neighbors@q and
CoRatings@q, we evaluate significance for all rating queries q ∈ [2; 100] when utilizing k = 10
neighbors. For other metrics, i.e., MAE@k , PrivacyRisk@k , PP-Corr@k , and Coverage@k , we
evaluate significance after all queries have been processed by the recommender system. Again,
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here, we utilize k = 10 neighbors to generate recommendations. Importantly, throughout this
work, we only report statistical significance if we observe significance for each of the five
folds.

5.5 Parameter Settings

The proposed approach relies on two adjustable hyperparameters: (i) the number of neighbors k
used in the recommendation process and (ii) the data usage threshold τ . To test the performance of
ReuseKNN and ReuseKNNDP for different values ofk , we varyk ∈ {5, 10, 15, 20, 25, 30}. Plus, we set
τ to the approximate starting value of the tail of UserKNN ’s data usage distribution DataUsage@k,
which is given by its maximal second derivative (see Figure 1). This way, we assume that only the
tail’s small privacy risk (as a result of the rare data usage) is tolerable and give an example of how
τ can be defined by the recommender system provider. Also, τ is the same for all users. This leads
to the following τ values for k = 10: 92.89 (ML 1M), 91.54 (Douban), 104.32 (LastFM), 95.79 (Ciao),
and 94.90 (Goodreads). For the similarity function sim, we use cosine similarity.

6 RESULTS AND DISCUSSION

We structure our results into two parts: (i) neighborhood reuse only (ReuseKNN ), and (ii) neigh-
borhood reuse with DP (ReuseKNNDP ).

6.1 ReuseKNN

In this section, we present our evaluation results for ReuseKNN, i.e., neighborhood reuse only.

6.1.1 Neighborhood Reuse. As the first step in this evaluation stage, neighborhood reuse only,
we investigate the neighborhoods generated by ReuseKNN. Specifically, we compare our neigh-
borhood reuse strategies to our UserKNN baseline with respect to the neighborhood size and the
number of co-ratings with the target user. Moreover, we test for statistical significant differences
to UserKNN after multiple rating queries, i.e., for all q ∈ [2; 100].
We investigate the average size of target users’ neighborhood after q rating queries for a model

with k = 10 neighbors in Figure 3. For all of our five datasets, the size of a user’s neighborhood
increases more strongly for traditional UserKNN than for our neighborhood reuse strategies. For
ML 1M,Douban, LastFM, andGoodreads, a one-tailedMann-Whitney-U-Test (α = 0.01) shows that
all our neighborhood reuse strategies yield significantly smaller neighborhoods than traditional
UserKNN for q ∈ [2; 100] rating queries. This means that ReuseKNN can already reuse neighbors
after an initial neighborhood is generated for the very first rating query.
However, for Ciao, multiple initial rating queries are needed to generate reusable neighborhoods.

Our neighborhood reuse strategies tend to yield significantly smaller neighborhoods only for a
few rating queries. For Gain, we do not observe significant differences. We attribute this to the on
average small user profiles in Ciao (see Table 3). Reusable neighbors are scarce and, thus, ReuseKNN
cannot reduce the neighborhood size as effectively as in the case of the other datasets.
In addition to the neighborhood size, we also investigate the number of co-rated items between

the target user and its neighbors after querying q rating queries (see Figure 4). Note that, as before,
the statistical significance is evaluated after multiple rating queries, i.e., for all q ∈ [2; 100]. For all
of our five datasets, our neighborhood reuse strategies can substantially increase the number of co-
ratings over traditional UserKNN. A one-tailed Mann-Whitney-U-Test (α = 0.01) reveals that our
neighborhood reuse strategies generate neighborhoodswith significantlymore co-ratings with the
target user than UserKNN for q ∈ [2; 100] rating queries. This indicates that ReuseKNN generates
neighborhoods with fewer neighbors that have more co-ratings with the target user than in the
case of traditional UserKNN, which can foster recommendation accuracy [2, 16].
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Fig. 3. Average number of neighbors per target user afterq rating queries. Our neighborhood reuse strategies
utilized in ReuseKNN, i.e., Expect and Gain, generate smaller neighborhoods than UserKNN.

Fig. 4. Avg. number of co-rated items between the target user and its neighbors. Our neighborhood reuse
strategies for ReuseKNN, i.e., Expect and Gain, generate neighborhoods, in which the neighbors’ rated items
overlap more with the target users’ than in the case of UserKNN. With this, neighbors are beneficial for
generating accurate recommendations.

However, for Ciao, our neighborhood reuse strategies tend to generate neighborhoods with
significantlymore co-ratings for only a few rating queries. As in our neighborhood size experiment,
we attribute this to the small user profiles in Ciao, which makes neighborhood reuse less effective
due to the scarcity of reusable neighbors.

6.1.2 Accuracy. Next, we compare ReuseKNN with traditional UserKNN in terms of recommen-
dation accuracy (see Figure 5). Specifically, we test for statistically significant differences between
our neighborhood reuse strategies and the UserKNN baseline.
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Fig. 5. Comparison of the recommendation accuracy between ReuseKNN and UserKNN. ReuseKNN ’s neigh-
borhood reuse strategies generate more accurate recommendations than UserKNN. For sparse datasets (i.e.,
Ciao and Goodreads), personalized neighborhood reuse (i.e., Gain) works better. In contrast, unpersonalized
neighborhood reuse (i.e., Expect) works better for datasets, in which neighbors are scarce (i.e., LastFM).

We find that our neighborhood reuse strategies can generate more accurate recommendations
than UserKNN. This shows that reusing neighbors that have already been used in the past can also
lead to meaningful (accurate) recommendations in the future. Specifically, for ML 1M, Douban,
and LastFM, a one-tailed Mann-Whitney-U-Test (α = 0.01) indicates that our neighborhood reuse
strategies significantly increase recommendation accuracy for a model with k = 10 neighbors. Due
to personalization, Gain performs best across most datasets.
For LastFM, unpersonalized neighborhood reuse (i.e., Expect) outperforms personalized neigh-

borhood reuse (i.e., Gain). We attribute this to LastFM’s small users-to-items ratio as compared
with the other datasets (see Table 3), which makes it hard to identify neighbors, similar to an
item–cold start scenario [52]. Concretely, in the case of personalized neighborhood reuse, select-
ing reusable neighbors for a specific target user reduces the pool of potential neighbors per item
to a personalized subset and leads to a worse performance compared with unpersonalized neigh-
borhood reuse. In contrast, unpersonalized neighborhood reuse allows using the entire pool of
potential neighbors and, thus, achieves a higher accuracy for LastFM.
In the case of our least dense datasets Ciao and Goodreads, we observe that our personalized

neighborhood reuse strategy Gain can handle these datasets better than our unpersonalized neigh-
borhood reuse strategy Expect. Gain selects neighbors whose rating data could have been used by
the target user in the past (see Equation (6)). This way, Gain creates a neighborhood for a given
target user with sufficient rating data even in sparse datasets.
Plus, we highlight thatGain significantly increases recommendation accuracy for Goodreads de-

spite the dataset’s low density. In the case of Ciao, a two-tailed Mann-Whitney-U-Test (α = 0.01)
reveals no significant differences between our neighborhood reuse strategies and UserKNN for
k = 10, which suggests that all our neighborhood reuse strategies can preserve recommendation
accuracy. As shown in our previous experiments (see Section 6.1.1), neighborhood reuse is less
effective for Ciao due to the small user profiles. Thus, it makes sense that for Ciao, the recommen-
dation accuracy cannot be improved as effectively as for the remaining datasets.

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 5, Article 80. Publication date: August 2023.



ReuseKNN: Neighborhood Reuse for Differentially Private KNN-Based Recommendations 80:17

Table 4. Percentage of Vulnerable Users for a Model with k = 10 Neighbors

Method ML 1M Douban LastFM Ciao Goodreads

UserKNN 80.39% 96.68% 99.89% 8.02% 65.00%
UserKNN+Reuse 84.64% 87.37% 98.90% 7.91% 52.29%
Expect 24.13% 34.40% 68.20% 7.88% 29.12%

Gain 25.09% 37.43% 80.28% 8.19% 40.51%

Best results, i.e., lowest values, are in bold. For all datasets, ReuseKNN ’s Expect

neighborhood reuse strategy leads to fewer vulnerable users than UserKNN. For Ciao,

our neighborhood reuse strategies can achieve only minor improvements, as already

UserKNN yields a small percentage of vulnerable users.

6.1.3 Percentage of Vulnerable Users. In Section 6.1.1, we found that neighborhood reuse can
significantly reduce the number of neighbors that are utilized in the recommendation process.
Now, however, we analyze how many neighbors are utilized for more than τ rating queries (i.e.,
the usage of their data exceeds threshold τ ) and, thus, need to be protected with DP (see Table 4).
Specifically, we compare our neighborhood reuse strategies to the UserKNN baseline.
For all of our five datasets, our neighborhood reuse strategies lead to less vulnerable users than

traditional UserKNN. Especially, Except shows the best (i.e., lowest) percentage of vulnerable users.
For example, for the ML 1M dataset, UserKNN leads to 80.39% of users that are vulnerable, since
their data usage exceeds threshold τ = 92.89 (see Section 5.5), whereas Expect leads to only 24.13%
vulnerable users and, thus, fewer users need to be protected with DP.

For Ciao, our neighborhood reuse strategies achieve only minor improvements over UserKNN.
The reason is that UserKNN already yields a small percentage of vulnerable users and, as such,
ReuseKNN leads to only small improvements. Additionally, our previous findings show that the
effect of neighborhood reuse on Ciao is smaller than on the remaining datasets due to the small
average user profile size (see Table 3). This leads to a lack of reusable neighbors and, thus, also
limits the effect that neighborhood reuse has on the percentage of vulnerable users.

6.1.4 Summary. Overall, we find that through neighborhood reuse, ReuseKNN can significantly
reduce the size of target users’ neighborhoods as compared with traditional UserKNN. Despite the
much smaller neighborhoods, ReuseKNN identifies neighbors that have many more co-rated items
with the target user than in the case of UserKNN. As related work suggests, these neighbors are
more “reliable” and can be crucial for recommendation accuracy [2, 16].
Based on the much smaller but more reliable neighborhoods, ReuseKNN can provide signifi-

cantly higher recommendation accuracy than traditional UserKNN. For sparse datasets, personal-
ized neighborhood reuse seems to be a better solution than unpersonalized neighborhood reuse.
Plus, ReuseKNN can substantially reduce the percentage of vulnerable users, and in general, our

Except neighborhood reuse method yields the fewest vulnerable users.

6.2 ReuseKNNDP

Next, we present our results on ReuseKNNDP , i.e., neighborhood reuse with DP.

6.2.1 Accuracy. First and foremost, we note that in our experiments without DP (see Figure 5),
UserKNN could be outperformed by ReuseKNN. In our experiments with DP, however (see
Figure 6), it is apparent that all evaluated DP methods do not reach the accuracy of non-DP
UserKNN. This means that in general, due to DP, drops in recommendation accuracy have to
be expected. However, we will investigate next whether ReuseKNNDP can make this accuracy
drop less severe compared with using the baselines. In detail, we compare our neighborhood
reuse strategies to the UserKNNDP baseline and test for statistically significant differences.
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Fig. 6. Comparison of the recommendation accuracy between ReuseKNNDP and UserKNNDP . We find that
ReuseKNNDP ’s neighborhood reuse strategies, ExpectDP and GainDP , can preserve or even improve recom-
mendation accuracy in terms of lower MAE. This shows that reducing the number of users to which DP has
to be applied can help to increase recommendation accuracy.

Furthermore, we incorporate UserKNN without DP and UserKNN
f ull

DP
as additional baselines for

our experiments.
In general, for our neighborhood reuse strategies, DP does not cause an accuracy drop as severe

as in case of UserKNNDP (see Figure 6). Plus, as expected, UserKNN
f ull

DP
performs worst due to the

randomness that is added via DP to the rating data of all users. This shows that our neighborhood
reuse concept helps to generate accurate recommendations in differentially private KNN-based
recommender systems. For ML 1M and LastFM, a one-tailed Mann-Whitney-U-Test (α = 0.01)
indicates that our neighborhood reuse strategies significantly increase recommendation accuracy
over UserKNNDP for a model with k = 10 neighbors. Additionally, for ML 1M, GainDP performs
better than our non-DP baseline UserKNN.
Moreover, we observe that LastFM is highly sensitive to the incorporation of DP, since the mean

absolute error magnitudes differ substantially between our non-DP experiment in Figure 5 and our
DP experiment in Figure 6. In line with our previous results on non-DP ReuseKNN, ReuseKNNDP ’s
unpersonalized neighborhood reuse strategy ExceptDP also cannot increase recommendation ac-
curacy for Ciao and Goodreads, which are our two sparsest datasets. However, our personalized
neighborhood reuse strategy GainDP generates recommendations with significantly higher accu-
racy for Goodreads. For Ciao, no significant differences are found according to a two-tailed Mann-
Whitney-U-Test (α = 0.01). Thus, GainDP can preserve recommendation accuracy.

For Douban, we observe no significant differences between our neighborhood reuse strategies
and UserKNNDP . We found empirically that for Douban, UserKNNDP and ReuseKNNDP utilize
more rating data from vulnerable users than in the case of our remaining datasets. Thus, we mea-
sure the fraction of rating data; each user contributes to the dataset, i.e., |Ru |/|R |, where R are all
users’ ratings and Ru are useru’s ratings. We find that for Douban, the 5% of users with the largest
user profiles contribute substantially more ratings to the dataset than for our other datasets: 0.0008
(ML 1M), 0.0022 (Douban), 0.0012 (LastFM), 0.0009 (Ciao), and 0.0003 (Goodreads). This suggests
that in the case of Douban, the recommendation process more often utilizes these users due to
their abundance of rating data. This, however, makes these users more vulnerable. Therefore, we
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Fig. 7. Logarithm (base 10) of the privacy risk averaged over all users. ReuseKNNDP ’s neighborhood reuse
strategies yield lower privacy risk than UserKNNDP . This is due to the fact that ReuseKNNDP reduces the
percentage of users with a privacy risk of τ (i.e., vulnerables) and simultaneously decreases the privacy risk
of the remaining users (i.e., secures). Overall, we find that our unpersonalized neighborhood reuse strategy
ExpectDP achieves the best user privacy, i.e., the lowest privacy risk.

suppose that this strong utilization of DP-protected rating data from vulnerable users leads to no
significant differences in accuracy between UserKNNDP and ReuseKNNDP .

For Douban, we additionally compare ReuseKNNDP to UserKNN
f ull

DP
. Our results suggest that

our personalized reuse strategy GainDP generates recommendations with significantly higher ac-
curacy, wher ExceptDP show no significant differences. Thus, all our neighborhood reuse strategies
can preserve recommendation accuracy for this dataset.

6.2.2 Privacy Risk. In ReuseKNNDP , vulnerable users with high data usage are protected with
DP and as such, their privacy risk is set to threshold τ . Moreover, secure users’ privacy risk is also
reduced since they are rarely exploited as neighbors in the recommendation process, i.e., low data
usage (see Figure 1). Specifically, we compare our neighborhood reuse strategies to UserKNNDP

and test for statistically significant differences. Furthermore, we use UserKNN without DP and
FullDP as additional baselines.

We visualize the privacy risk of ReuseKNNDP and our three baselinesUserKNN,UserKNNDP , and

UserKNN
f ull

DP
in Figure 7. We find that our neighborhood reuse strategies combined with DP can

improve user privacy over UserKNNDP . Specifically, a one-tailed Mann-Whitney-U-Test (α = 0.01)
reveals that for our neighborhood reuse strategies on all datasets and for k = 10, users have
significantly less privacy risk than in UserKNNDP .

However, for LastFM, this privacy improvement is smaller than for the other datasets. Due to
the large percentage of vulnerable users for all approaches (see Table 4), most users’ privacy risk
is set to τ due to the application of DP. Thus, the small percentage of secure users is insufficient
to reduce the average privacy risk via neighborhood reuse in the case of LastFM.
Across all datasets, we observe that our unpersonalized neighborhood reuse strategy ExpectDP

yields the best (lowest) privacy risk. This finding is in line with our previous results in Table 4,
which show that ExpectDP performs best with respect to minimizing the percentage of vulnerable
users. Thus, only a few users have a privacy risk of τ , and the high number of secure users enables
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a drastic reduction of the average privacy risk. For example, the average privacy risk of secure
users for a model with k = 10 neighbors for ExpectDP is 11.45 for ML 1M, 18.34 for Douban, 49.92
for LastFM, 15.29 for Ciao, and 18.99 for Goodreads compared with the privacy risk of secure users
for UserKNNDP , which is 50.83 for ML 1M, 62.13 for Douban, 73.42 for LastFM, 21.76 for Ciao, and
41.13 for Goodreads. Additionally, a one-tailed Mann-Whitney-U-Test (α = 0.01) reveals that for
ML 1M, Douban, Ciao, and Goodreads, these differences are significant. Thus, for secure users,
ExpectDP yields a substantially smaller privacy risk than UserKNNDP .

6.2.3 Item Popularity Bias. We test for item popularity bias in ReuseKNNDP ’s recommendations
via comparing ReuseKNNDP to our UserKNNDP baseline with respect to two metrics: Positivity-
Popularity Correlation (PP-Corr) and ItemCoverage (Coverage). Plus, we useUserKNN without DP

and UserKNN
f ull

DP
as additional baselines. Moreover, in the case of PP-Corr, we test for statistically

significant differences between our neighborhood reuse strategies and UserKNNDP (see Table 3).
First and foremost, for ML 1M, Douban, LastFM, and Ciao, the non-DP baseline UserKNN yields
lower PP-Corr values than all remaining methods that use DP. Similarly, applying DP to only
vulnerable users yields lower PP-Corr values than applying DP to all users in the case of ML 1M,
Douban, Ciao, and Goodreads. This fits well to related research [21] arguing that popularity bias
can arise due to the recommender system’s inability to personalize recommendations when DP is
applied.
However, ReuseKNNDP can make the impact of DP on popularity bias less severe, since our

neighborhood reuse strategies yield a lower PP-Corr than the DP baseline UserKNNDP . No notable
differences can be observed for Ciao only. We investigate this in more detail and find that the
neighbors identified by ReuseKNNDP rated more distinct items than the neighbors identified by
UserKNNDP . As shown by related work on item popularity bias in recommender systems (e.g., [1,
39]), users with a larger user profile size tend to consume less popular items, which leads to less
popularity bias. Due to the small number of ratings per user in Ciao (see Table 3), which is similar
to a user cold-start setting [40], no noteworthy effects on popularity bias can be observed.

In addition to PP-Corr, we also evaluate Coverage, i.e., the percentage of items from the entire

item catalog that occur within users’ sets of top items. In general, UserKNN
f ull

DP
tends to give the

highest item coverage and non-DP UserKNN yields the lowest item coverage. This makes sense

since UserKNN
f ull

DP
protects all rating data with DP and, thus, the estimated rating scores are more

random than for the remaining approaches. This leads to more randomized recommendations,
and, therefore, to high item coverage [22]. These randomized recommendations also lead to the

fact that, in Table 5, ReuseKNNDP cannot reach the item coverage of UserKNN
f ull

DP
. However, more

randomized recommendations lead to poorer accuracy than our previous results in Figure 6 show.
Our neighborhood reuse strategies cover fewer items than UserKNNDP only in the case of

LastFM. We underline that these item coverage values are negatively correlated with our accuracy
results in Figure 6. This indicates that for LastFM, there is a trade-off between recommendation
accuracy and item coverage similar to the well-known trade-off between precision and recall [8].

6.2.4 Summary. Overall, our results are in line with the previously presented results for our
non-DP ReuseKNN. Through neighborhood reuse and, thus, reducing the number of users that
need to be protected with DP, recommendation accuracy can be preserved and, in many cases,
even significantly improved over UserKNNDP .

Also, our neighborhood reuse strategies used in ReuseKNNDP lead to significantly smaller pri-
vacy risk than UserKNNDP . In particular, unpersonalized neighborhood reuse (i.e., ExceptDP ) per-
forms best in increasing user privacy. This shows that the combination of neighborhood reuse and
DP provides higher privacy than UserKNNDP .
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Table 5. PP-Corr and Item Coverage for a Model with k = 10 Neighbors

ML 1M Douban LastFM Ciao Goodreads

PP-Corr Coverage PP-Corr Coverage PP-Corr Coverage PP-Corr Coverage PP-Corr Coverage
UserKNN 0.8405 87.94% 0.6780 23.50% 0.7339 6.11% 0.9755 63.19% 0.9318 29.56%
UserKNNDP 0.8742 88.77% 0.7589 26.55% 0.8625 15.54% 0.9758 64.03% 0.9409 31.59%

UserKNN
f ull

DP
0.8800 89.53% 0.7675 27.65% 0.8597 15.86% 0.9778 66.72% 0.9523 34.13%

UserKNN+ReuseDP 0.8750 88.37% 0.7523 27.67% 0.8779 15.46% 0.9759 64.26% 0.9407 31.74%
ExpectDP 0.8688 88.83% ∗∗0.7400 28.75% 0.8773 14.32% 0.9767 64.58% ∗∗0.9317 34.69%
GainDP 0.8725 88.07% ∗∗0.7428 28.61% 0.8621 14.77% 0.9769 64.01% 0.9454 31.46%

Best results, i.e., highest for PP-Corr and lowest for Coverage, are in bold. For PP-Corr, a z-Test [32] shows, with **

(α = 0.01) that our neighborhood reuse strategies as utilized in ReuseKNNDP lead to estimated rating scores that are

significantly less correlated with item popularity than in case of UserKNNDP . With respect to item coverage,

especially ExpectDP can cover a larger percentage of the item catalog than UserKNNDP . Overall, our results suggest

that ReuseKNNDP does not increase item popularity bias over UserKNNDP .

Table 6. Mean Absolute Error and Average Privacy Risk Values for our Neighborhood Reuse Strategies
Used in ReuseKNNDP , i.e., ExpectDP and GainDP and for the UserKNNDP Baseline (k = 10)

ML 1M Douban LastFM Ciao Goodreads

MAE Privacy R. MAE Privacy R. MAE Privacy R. MAE Privacy R. MAE Privacy R.
UserKNN 0.80 330.77 0.66 665.17 47.46 844.94 0.78 35.21 0.80 182.26
UserKNNDP 0.82 84.39 0.68 89.86 118.80 103.77 0.81 27.61 0.83 75.71

UserKNN
f ul l

DP
0.83 0.00 0.69 0.00 128.41 0.00 0.87 0.00 0.85 0.00

UserKNN+ReuseDP 0.81 87.16 0.68 87.16 118.13 103.56 0.81 26.54 0.83 68.35
ExpectDP

∗∗0.80 ∗∗31.03 0.68 ∗∗43.25 ∗∗111.78 ∗∗86.81 0.82 ∗∗21.53 0.85 ∗∗40.95
GainDP

∗∗0.79 ∗∗35.30 0.68 ∗∗46.57 ∗∗115.31 ∗∗93.95 0.81 ∗∗26.74 ∗∗0.81 ∗∗55.90
Also, we perform a one-tailed Mann-Whitney-U-Test (α = 0.01) and mark (with ∗∗) significantly better (i.e., Lower)

values than UserKNNDP . Overall, personalized neighborhood reuse (i.e., GainDP ) yields the best accuracy and

unpersonalized neighborhood reuse (i.e., ExpectDP ) gives the lowest privacy risk. For Douban and LastFM, ExpectDP
is well-suited as it yields the highest accuracy and lowest privacy risk. For the remaining datasets, all neighborhood

reuse strategies provide a less serious accuracy-privacy trade-off than UserKNNDP .

In addition, we find that for ReuseKNNDP , high estimated rating scores are weaker correlated
to item popularity than in the case of UserKNNDP and that ReuseKNNDP can estimate high rating
scores for more items than UserKNNDP . Thus, ReuseKNNDP does not increase item popularity
bias.

6.3 Discussion

Weprovide a condensed summary of experimental results (see Table 6) for all evaluated approaches
and all five datasets. Specifically, we present the accuracy (i.e., MAE@k) and average privacy risk
(i.e., PrivacyRisk@k) values for a model with k = 10 neighbors.

Overall, non-DP UserKNN results in low MAE but high privacy risk values. This shows that
approaches without DP sacrifice a user’s privacy for recommendation accuracy. However, our
neighborhood reuse strategies with DP provide a less serious trade-off between recommendation
accuracy and privacy. Thus, in the following, we briefly discuss advantages and disadvantages of
our neighborhood reuse strategies for all five datasets.
Across our neighborhood reuse strategies that are utilized in ReuseKNNDP , in general, person-

alized neighborhood reuse (GainDP ) provides the best recommendation accuracy. Plus, unperson-
alized neighborhood reuse (ExpectDP ) yields the lowest privacy risk. For Douban and LastFM, Ex-
pectDP performs best in both accuracy and privacy risk. Thus, in this case, ExpectDP is well suited
to provide accurate and private recommendations. For ML 1M, Ciao, and Goodreads, no neighbor-
hood reuse strategy provides the best result in both evaluation criteria. Thus, it depends on the
recommender system service provider to decide what strategy could be utilized.
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6.4 Additional Considerations and Experiments

While our experiments reported so far considered a rating prediction task as motivated by our
problem statement in Section 3 (accordingly, we measured accuracy using the MAE [51]), we
perform additional experiments with regards to a ranking-based recommendation scenario and
a neural-based recommender system. Due to space limitations, the results of these are detailed in
the appendices of this article. First, we model a ranking-based recommendation scenario, which is
very common today. Accordingly, we perform experiments using a ranking-based evaluation met-
ric, nDCG [35], and report results in Appendix B. Given the widespread adoption of deep learning
techniques in the latest recommender systems, we also incorporate neighborhood reuse into a pop-
ular neural-based approach, neural collaborative filtering (NeuCF) [29]. The approach and results
are detailed in Appendix C.
Overall, our additional experiments reveal the same pattern of results as discussed above.

That is, the combination of neighborhood reuse and DP can provide a better trade-off between
accuracy and privacy than recommendation methods without neighborhood reuse. This shows
the generalizability of the neighborhood reuse principle for other evaluation scenarios and
recommendation algorithms.

7 CONCLUSION

In this work, we investigate the efficacy of neighborhood reuse for differentially private KNN-
based recommendations. We discuss the proposed approach in a two-stage evaluation procedure:
(i) neighborhood reuse only, ReuseKNN, to distill the impact of neighborhood reuse on recommen-
dation accuracy and on the percentage of users that need to be protected with differential privacy;
and (ii) neighborhood reuse with differential privacy, ReuseKNNDP , to investigate the practical
benefit of neighborhood reuse for differentially private KNN-based recommendations. We find
that ReuseKNN and ReuseKNNDP can substantially reduce the number of users that need to be
protected with DP while outperforming related approaches in terms of accuracy. Also, we high-
light that ReuseKNNDP effectively mitigates users’ privacy risk, as most users are rarely exploited
in the recommendation process. Our work illustrates how to address privacy risks in recommender
systems through neighborhood reuse combined with DP.

Limitations.We recognize two limitations of the proposed approach. To quantify the privacy risk,
we assume that all pieces of data are equally sensitive. In reality, disclosing a particular piece of
information could pose a different level of privacy risk than disclosing another piece of informa-
tion [38, 45]. Also, we focus on a neighborhood-based recommender system, specifically user-based
KNN, instead of neural-based recommender systems. The latter are popular due to their ability to
extract and exploit rich user and item representations for generating recommendations. However,
traditional algorithms, such as user-based KNN, have been shown to perform well in a variety of
real-world use cases [15]. Plus, neighborhood-based recommender systems have the advantage of
providing justifiable recommendations and they incorporate new rating data of users efficiently
without requiring a complete retraining of the whole model from scratch [16]. Nonetheless, we
demonstrate in Appendix C that neighborhood reuse can be generalized to neural-based recom-
mender systems, e.g., NeuCF [29].

Future Work. In this work, we evaluated the proposed approach using datasets of three different
domains (movies, books, andmusic). Future work will consider additional, more sensitive domains,
such as medicine, finance, insurance, and recruiting. We will also incorporate neighborhood reuse
into other neural-based recommendation models, e.g., BERT4Rec [54]. Plus, we plan to study the
impact of the proposed approach, i.e., neighborhood reuse and differential privacy, on individual
users’ preferences towards long-tail items, e.g., by using the dataset from our previous work on
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fairness in music recommender systems [39]. Hence, our long-term plan is to investigate the inter-
action between privacy and fairness, two key aspects of trustworthy recommender systems.

MATERIALS

The Python-based implementation of our work is publicly available.1 Also, we provide the source
code for generating our sample of the Goodreads dataset. All remaining datasets are publicly avail-
able as well (see Section 5.3).

APPENDICES

A DETAILED DIFFERENTIAL PRIVACY ANALYSIS

Our differential privacy analysis relies on the fact that, even if the adversary is able to infer the
rating used in the recommendation process, it is unaware whether this rating is the neighbor’s
real rating or was randomly generated by ourmDP mechanism. Formally:

Pr [Adversary’s assumption: Real rating | Truth: Real rating]

Pr [Adversary’s assumption: Real rating | Truth: Random rating]
= (20)

Pr [Non-DP rating] + Pr [Real rating | DP rating] · Pr [DP rating]

Pr [Random rating | DP rating] · Pr [DP rating]
= (21)

Pr [Non-DP rating]

Pr [Random rating | DP rating] · Pr [DP rating]
+

Pr [Real rating | DP rating]

Pr [Random rating | DP rating]︸������������������������������������︷︷������������������������������������︸
mDP mechanism

= (22)

1

0.25
· Pr [Non-DP rating]

Pr [DP rating]
+
0.75

0.25
= (23)

4 ·
PrivacyRisk@k (u )
DataUsage@k (u )

DataUsage@k (u )−PrivacyRisk@k (u )
DataUsage@k (u )

+ 3 = (24)

4 · PrivacyRisk@k (u)

DataUsage@k (u) − PrivacyRisk@k (u)
+ 3 ≤ eϵ (25)

which leads to a privacy parameter of

ϵ = ln �
�
3 + 4 · PrivacyRisk@k (u)

DataUsage@k (u) − PrivacyRisk@k (u)
�
�
. (26)

In the case of UserKNN
f ull

DP
, all ratings of a user u are protected with DP and, therefore,

PrivacyRisk@k (u) = 0, which leads to ϵ = ln 3. In the case of UserKNN, no DP is applied at
all and, thus, computing ϵ is not possible since ϵ is part of the DP framework. Therefore, we
set ϵ = ∞. In the case of UserKNNDP and ReuseKNNDP , DP is applied to the rating data of
users, for which the usage of their data exceeds threshold τ . Assuming that u is vulnerable,
then DataUsage@k (u) > τ and PrivacyRisk@k (u) = min[τ ,DataUsage@k (u)]. Therefore, it
follows that 0 < PrivacyRisk@k (u) < DataUsage@k (u). Varying PrivacyRisk@k (u) within these
boundaries yields:

ln 3 < ln �
�
3 + 4 · 1

DataUsage@k (u) − 1
�
�
≤ ϵ ≤ ln �

�
3 + 4 · (DataUsage@k (u) − 1)�

�
< ∞. (27)

1https://github.com/pmuellner/ReuseKNN
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This shows that UserKNNDP and ReuseKNNDP provide better privacy than UserKNN, but worse

privacy than UserKNN
f ull

DP
.

Moreover, via neighborhood reuse,ReuseKNNDP utilizes a vulnerable userumore often as neigh-
bor (withDP-protected data) thanUserKNNDP does. Also, note that the privacy risk ofu is the same
for ReuseKNNDP and UserKNNDP . From these observations and Equation (26), we see that the ϵ
value for ReuseKNNDP is smaller than the ϵ value for UserKNNDP . Thus, for vulnerable users, our
neighborhood reuse principle leads to ReuseKNNDP providing better privacy than UserKNNDP .

B EVALUATION OF TOP-N RECOMMENDATIONS

In our article, we show that ReuseKNNDP can achieve better accuracy in terms of the rating predic-
tion metric MAE than a traditional KNN recommender system with DP. In the following, we eval-
uate ReuseKNNDP in a top-n items recommendation setting via the ranking-aware metric nDCG
(Normalized Discounted Cumulative Gain) [35].

B.1 Evaluation Process

To generate a list of recommended items that can be evaluated via nDCG, we select then = 10 items
with the highest predicted rating score for a given target user u [51]. Formally, for a recommender
system model R and k neighbors, a user u’s top-n items are given by:

Rktop (u) = n
argmax
i ∈Qu

Rk (u, i ) (28)

where Qu are the items in u’s query set. We consider items in the test set as relevant if their true
rating exceeds the average rating in the training set of the given dataset.

B.2 Experiments

Our results reveal that ExpectDP and GainDP can yield higher nDCG scores than UserKNN
f ull

DP
(see

Figure 8). In the case of the ML 1M dataset, ExpectDP and GainDP can even outperform the non-DP
baseline UserKNN. Especially GainDP yields high nDCG scores. Overall, this experiment validates

Fig. 8. nDCG values of each user’s top 10 items. The pattern matches our results reported in Section 6, i.e.,
ReuseKNNDP can yield better accuracy than UserKNNDP . Also, especially personalized neighborhood reuse
(i.e., GainDP ) can preserve accuracy well.
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the results of our rating prediction evaluation setting also in a top-n items recommendation
setting.

C EVALUATION OF NEURAL-BASED RECOMMENDATIONS

This work considers rating data as input to the recommender system. However, recommender sys-
tems can also use more complex representations of users and items, i.e., embeddings as generated
by neural network architectures. Therefore, in the following, we demonstrate the generalizability
of our approach for neural-based recommendation methods.

C.1 Generation of Embeddings

To generate user and item embeddings, we rely on a simple approach inspired by the NeuCF [29]
architecture. Specifically, for user u and item i , the predicted rating score yu,i is given by:

yu,i = b + ReLu
(
wxuW

T
u xiWi

)
, (29)

where xu is the id of user u, xi is the id of item i , the size of the embedding layer is d = 16,
Wu ,Wi ∈ Rd , w,b ∈ R, and ReLu is the activation function. We apply Adam [37] with a step size
of α = 0.001 to minimize the MAE betweenyu,i and the rating ru,i . The parameters α and d are set
to the values proposed in [29]. We train the network for 50 epochs and use a batch size of 128. We
stop training if there is no improvement of the training objective for more than 10 epochs. After
training, the user and item embeddings are given by xuWu and xiWi respectively.

C.2 Neural-Based Recommendations

For our neural-based variants of UserKNN—NeuKNN and NeuKNNDP—we calculate the similar-
ity between the target user and the candidate neighbors based on their user embeddings (see
Equation (2)). ForNeuKNN+ReuseDP , i.e., an embedding-based variant of ReuseKNNDP , we also use
an embedding-based similarity. Plus, we employ a modified definition of reusability that measures
the reusability of a candidate neighbor c based on the previous t −1 rating queries of target useru:

reusability (c |u, i, t ) =
∑

j ∈Q (t−1)
u

1Nu, j (c ) · sim(i, j ), (30)

where 1Nu, j (c ) is the indicator function of candidate neighbor c being in Nu, j . The item similarity
sim is the cosine similarity between i’s and j’s item embeddings. Therefore, reusability (c |u, i, t ) is
the summed-up item similarity between the target item i and all items j ∈ Q (t−1)

u (i.e., the previous
t − 1 rating queries of u) for which c has been used as neighbor.

C.3 Experiments

In our experiments, we perform evaluation according to the following procedure: First, we ran-
domly split the dataset into 5 equally sized subsets: D1≤i≤5. We select D1 and equally partition it
into the validation data that is used for validating the user and item embeddings and the test data
that is used for evaluating the recommendations. The remaining data,

⋃
2≤i≤5 Di , is used to train

the user and item embeddings and to generate recommendations. Next, we select Di and repeat
this procedure for all D2≤i≤5. Eventually, we compute the mean of our evaluation results.

Accuracy. For all datasets, NeuKNN+ReuseDP outperforms our baseline NeuKNN
f ull

DP
that applies

DP to all users (see Figure 9). For completeness, we also visualize NeuKNN that does not apply
DP at all and, thus, yields higher accuracy than both DP-based methods. Overall, the result for

our embedding-based methods NeuKNN
f ull

DP
and NeuKNN+ReuseDP are in line with the results of
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Fig. 9. Mean absolute error of our neural-based KNN recommender system variants. Our results indicate
that combining neighborhood reuse with DP (i.e., NeuKNN+ReuseDP ) yields better accuracy (lower MAE)

than neural-based methods that apply DP without neighborhood reuse (i.e., NeuKNN
f ull
DP

).

Fig. 10. Logarithmic (base 10) average privacy risk of our neural-based KNN recommender system variants.
Via combining neighborhood reuse and DP, NeuKNN+ReuseDP decreases the users’ average privacy risk
compared with neural-based methods that do not apply DP (i.e., NeuKNN).

our rating-based methods, i.e., that the combination of neighborhood reuse and DP yields better
accuracy on all five investigated datasets than traditional DP-based methods.

Privacy. Our baseline NeuKNN without DP yields the worst privacy risk, whereas NeuKNN
f ull

DP
yields a privacy risk of zero since all users are protected with DP (see Figure 10).NeuKNN+ReuseDP
protects only vulnerable users with DP; in this way, its privacy risk lies between our two baselines.
Therefore, also in terms of privacy risk, the results of our embedding-based experiments match
the pattern of the results of our rating-based methods.
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