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Abstract. Collaborative filtering-based recommender systems leverage
vast amounts of behavioral user data, which poses severe privacy risks.
Thus, often random noise is added to the data to ensure Differential Pri-
vacy (DP). However, to date, it is not well understood in which ways this
impacts personalized recommendations. In this work, we study how DP
affects recommendation accuracy and popularity bias when applied to
the training data of state-of-the-art recommendation models. Our find-
ings are three-fold: First, we observe that nearly all users’ recommen-
dations change when DP is applied. Second, recommendation accuracy
drops substantially while recommended item popularity experiences a
sharp increase, suggesting that popularity bias worsens. Finally, we find
that DP exacerbates popularity bias more severely for users who prefer
unpopular items than for users who prefer popular items.

Keywords: Recommender Systems · Collaborative Filtering ·
Differential Privacy · Accuracy · Popularity Bias

1 Introduction

Modern collaborative filtering-based recommender systems aim to generate per-
sonalized recommendations that cater to the specific preferences of each individ-
ual user. Such recommender systems need to provide recommendations of high
accuracy and must ensure that the recommendations do not exhibit popularity
bias, i.e., overestimate the relevance of popular items. For this, vast amounts
of user data need to be processed, which exposes the users to many severe pri-
vacy risks [7,10,49,57], e.g., the disclosure of rating data [10] or the inference
of sensitive user attributes [21,52]. Thus, besides recommendation accuracy and
popularity bias, user privacy is another important aspect of recommender sys-
tems research. Hence, it is critical to leverage privacy-preserving techniques such
as Differential Privacy (DP) [14] to devise privacy-aware recommender systems.
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Many mechanisms utilized to establish DP include the injection of random
noise into the users’ interaction data, which typically decreases the overall recom-
mendation accuracy [8,59]. For recommender systems, some widely used mecha-
nisms are the Gaussian or Laplacian Input Perturbation [14,19], Plausible Denia-
bility [16,39], or the 1-Bit mechanism [11,13]. In particular, the 1-Bit mechanism
is a natural match to the binary feedback data prevalent in modern recommender
systems. This mechanism randomly substitutes parts of the positive feedback
data with negative or missing feedback data, and then, this modified data is
used to train the recommendation model. Specifically, the amount of positive
feedback data that is randomly substituted depends on the privacy budget ε,
i.e., a hyperparameter that controls how much random noise is incorporated
into the recommendation process and what level of DP is achieved.

However, how DP impacts personalized recommendations is not well under-
stood. Specifically, it remains unclear whether DP impacts the recommendations
of all users, or just some users, and research on the connection between the ε
value and the drop in recommendation accuracy is scarce. Also, how DP and the
ε value impact the item popularity distribution in the respective recommenda-
tion lists and thus, popularity bias, is an open research topic. To shed light on
these issues, in this work, we address the following three research questions:

– How many users are impacted by DP? (RQ1)
– How does the privacy budget ε influence the accuracy drop? (RQ2)
– In which ways does DP impact popularity bias? (RQ3)

a. How does DP impact the popularity distribution of the recommendations?
b. How does DP impact popularity bias for different user groups?

Accordingly, we perform experiments with a neural matrix-factorization model
(i.e., ENMF [12]), a graph convolution network model (i.e., LightGCN [25]),
and a variational autoencoder model (i.e., MultVAE [33]), and use datasets
from the movie (i.e., MovieLens 1M [23]), music streaming (i.e., LastFM User
Groups [29]), and online retail domain (i.e., Amazon Grocery & Gourmet [43]).
Plus, we test various ε values to cater for different levels of privacy.

Our results show that nearly all users are impacted by DP, i.e., their recom-
mendations are different from those generated without DP. Plus, this difference
increases when ε becomes smaller (RQ1 ). With respect to recommendation accu-
racy, we find that DP leads to a substantial drop, which is most severe for small
ε values. This highlights the trade-off between recommendation accuracy and
privacy (RQ2 ). Similarly, we present strong evidence that DP increases popu-
larity bias, in particular, when ε becomes smaller. This underlines an impor-
tant trade-off between popularity bias and privacy. Moreover, we identify a “the
poor get poorer” effect: DP increases popularity bias, especially for users that
are already prone to strong popularity bias without DP, i.e., users that prefer
unpopular items (cf. the unfairness of popularity bias [2,29]).

Overall, this work extends existing research on the trade-off between recom-
mendation accuracy and privacy, and contributes novel insights on the connec-
tion between DP and popularity bias.
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2 Related Work

Several previous works [7,10,49,57] identified many critical privacy risks for users
in collaborative filtering-based recommender systems. For example, through the
recommendations, the recommender system could leak user data to malicious
parties [10,24,53], or an adversary could infer sensitive attributes of the user, e.g.,
gender [21,52,58]. To address these privacy risks, privacy-enhancing techniques,
such as Federated Learning [34,36], Homomorphic Encryption [22,26], or Differ-
ential Privacy (DP) [14,35,39] need to be incorporated into the recommender
system. However, Homomorphic Encryption has high computational complexity,
and Federated Learning can still leak sensitive user information [42,45].

Therefore, in the past years, DP has emerged as a prominent choice in the
recommender systems research community. However, one important shortcom-
ing of DP is its negative impact on recommendation accuracy: DP typically
leads to a substantial accuracy drop, since it incorporates random noise into
the recommendation process [8,20]. Several works address this trade-off between
recommendation accuracy and privacy by applying DP in different ways [20,41],
e.g., by applying DP only to parts of the dataset [39,54], or by carefully tun-
ing the degree of noise [59]. In detail, Zhu et al. [59] monitor how strong the
item-to-item similarities would change if a piece of user data was not present.
This way, they can better estimate what minimal level of random noise is nec-
essary to ensure DP, and increase recommendation accuracy over comparable
approaches. In a recommender system, there are typically a few users that are
willing to openly share their data and many users that are less inclined to share
their data. Xin and Jaakkola [54] exploit this, and protect only a subset of users
with DP, which facilitates recommendation accuracy. Müllner et al. [39] attach
to this, and modify the recommendation process of user-based KNN to minimize
the number of users to which DP needs to be applied.

Besides privacy, another critical problem of recommender systems is popu-
larity bias, i.e., the recommender system overestimates the relevance of popu-
lar items and therefore, popular items are overrepresented in the recommenda-
tions [2]. This can be regarded as disadvantaged, or “unfair” treatment of users
that prefer unpopular items, since the recommendations do not match these users
as well as users that prefer popular items. In theory, DP and fairness are closely
connected to each other [15,56], since for both, a user’s data needs to be hidden
from the recommender system, either to preserve privacy, or to prohibit discrimi-
nation based on, e.g., age or gender. In practice, correlations in the dataset can still
reveal age or gender and, therefore, lead to unfairness [6,17]. In this vein, several
works [4,17,55] investigate the trade-off between fairness and privacy. For exam-
ple, Sun et al. [50] use user data that is protected with DP to rectify the recom-
mendations to increase fairness. Similarly, also Yang et al. [55] use post-processing
to optimize for fairness with respect to recommendation accuracy. They observe
that regarding recommendation accuracy, DP can lead to more unfairness; how-
ever, they do not address DP’s impact on popularity bias.

Despite few existing works, how DP impacts personalized recommendations
remains an understudied problem and many research gaps exist. For example,
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whether the recommendations of all users are impacted, or how beyond-accuracy
objectives, such as reducing popularity bias or increasing diversity, are impacted.
Thus, our work attaches to existing work with respect to studying DP’s impact
on recommendation accuracy, and in addition, we provide novel insights to DP’s
impact on the trade-off between privacy and popularity bias.

3 Method

In this section, we explain how DP is applied to the user data and then, we
present multiple evaluation metrics to quantify DP’s impact on recommenda-
tion accuracy and popularity bias. Also, we describe the datasets used in this
study, and provide all preprocessing steps. Finally, we detail the experimental
setup including the hyperparameters, recommendation models, and our precise
evaluation protocol. We also provide our source-code to foster reproducibiltity.

3.1 Differential Privacy for Implicit Feedback

To ensure DP, we use the DP-mechanism from Ding et al. [13], which is a natural
match to the binary implicit feedback data prevalent in today’s recommender
systems [11]. With this mechanism, for positive feedbacks D+ and negative or
missing feedbacks D− between users and items, the probability that the feedback
fu,i between user u and item i is present in the DP dataset D+

DP is:

Pr[fu,i ∈ D+
DP ] =

{
eε

eε+1 if fu,i ∈ D+

1
eε+1 if fu,i ∈ D− (1)

where ε is the privacy budget [14] (i.e., it quantifies how much privacy loss is
tolerated; the higher, the less noise is added). In addition to positive feedback
data, also negative or missing feedback data can be randomly added to D+

DP .
However, the recommendation model is unable to identify these feedbacks and
assumes that all feedbacks in D+

DP are positive. By applying this mechanism
to the training data of the recommendation model, the recommendations shall
not leak information about the data that has been used in the recommendation
process. For computational efficiency, we follow Chen et al. [11] and randomly
sample one negative feedback for each positive feedback.

3.2 Evaluation Metrics

To identify users that are impacted by DP, we compute the Jaccard distance
between a user u’s recommendation list R(u) generated without DP and u’s
recommendation list RDP (u) generated with DP applied to the training data.
For the recommendation lists, we use the common cut-off of n = 10 items.
Formally, the set of users impacted by DP (i.e., Uimpacted) is given by:

Uimpacted =
{

u ∈ U : 1 − |R(u) ∩ RDP (u)|
|R(u) ∪ RDP (u)| > 0

}
(2)
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where U is the set of all users. This means that we consider a user u as impacted,
if DP leads to at least one different item in u’s recommendation list (cf. [18]).

Overall, we quantify to what degree DP impacts recommendation accuracy
and popularity bias of a user u’s recommendations via measuring the relative
change of an evaluation metric μ, when DP is applied (cf. [31,40]):

Relative change Δμ(u) =
μDP (u) − μ(u)

μ(u)
(3)

Average relative change Δμ =
1

|Uimpacted|
∑

u∈Uimpacted

Δμ(u) (4)

where μDP (u) is the value of the metric for user u when DP is applied and μ(u)
is the value of the metric without applying DP. Furthermore, Δμ denotes the
average change over all impacted users.

Recommendation Accuracy. To study the impact of DP on recommenda-
tion accuracy, we compute the ranking-agnostic Recall [44] metric. In this work,
we use ranking-agnostic metrics since they fit to the way in which we identify
impacted users, i.e., whether any item in the recommendation list changes due
to DP, disregarding the ordering of the items within the recommendation list.
We do not additionally include Precision, since ΔRecall = ΔPrecision1.

Popularity Bias. We evaluate DP’s impact on popularity bias via measuring
the Average Recommendation Popularity (ARP) [28], i.e., the average fraction
of users that interacted with a recommended item:

ARP (u) =
1

|R(u)|
∑

i∈R(u)

φ(i) (5)

where R(u) is the recommendation list of user u, and item i’s popularity
φ(i) = |Ui|/|U | is the number of users that interacted with i, i.e., |Ui|, divided by
the number of all users |U |. Several works suggest [2,29] that users that prefer
unpopular items experience more popularity bias than users that prefer popular
items. Thus, we use Popularity Lift (PopLift) [3] to quantify popularity bias for
distinct user groups. Specifically, this metric indicates whether the ARP matches
the average item popularity Γ (·) in the average user’s profile of user group G:

PopLift(G) =
∑

u∈G ARP (u) − ∑
u∈G Γ (u)∑

u∈G Γ (u)
(6)

We inspect two user groups: users that prefer items of low popularity, i.e., Ulow,
and users that prefer items with high popularity, i.e., Uhigh. We follow Abdollah-
pouri et al. [2] and correspondingly define Ulow as the set of the 20% of users with
1 The number of recommended relevant items is divided by the number of all relevant

items (i.e., Recall), or by the length of the recommendation list (i.e., Precision).
When DP is applied, ΔRecall and ΔPrecision only depend on how the number of
recommended relevant items changes and therefore, the relative change is the same.



The Impact of DP on Recommendation Accuracy and Popularity Bias 471

Table 1. Descriptive statistics of the three datasets. Users is the number of users,
Items is the number of items, Interactions is the amount of interactions in the dataset,
i.e., positive feedback, Profile Size is the average number of interactions per user, and
Density is the inverse sparsity of the dataset in percent.

Dataset Users Items Interactions Profile Size Density

MovieLens 1M 6,038 3,533 575,281 95.28 2.70%

LastFM User Groups 2,999 78,799 348,437 116.18 0.15%

Amazon Grocery & Gourmet 3,222 6,839 72,176 22.40 0.33%

the lowest fraction of popular items in their profile, and Uhigh as the set of the
20% of users whose profiles contain the highest fraction of popular items. The set
of popular items is given by the 20% of items with the highest item popularity
scores φ(i). In addition, we test whether there exists a Disparate Impact [37] of
DP on Ulow and Uhigh. Therefore, we measure the Gap [38], i.e., the absolute
difference between the PopLift values of the two user groups:

Gap = |PopLift(Ulow) − PopLift(Uhigh)| (7)

3.3 Datasets

For our experiments, we use three datasets, i.e., MovieLens 1M [23], LastFM
User Groups [29], and Amazon Grocery & Gourmet [43] (see Table 1). MovieLens
1M and Amazon Grocery & Gourmet comprise rating scores in the range of 1
to 5, whereas LastFM User Groups comprises listening events between users
and music artists [32,48]. For consistency and comparability, we follow [47] and
sum the listening events per artist, followed by scaling the resulting scores to the
range of 1 to 5. For MovieLens 1M and LastFM User Groups, we perform 20-core
user pruning, followed by discarding scores below the respective mean value, i.e.,
3.58 for MovieLens 1M and 1.13 for LastFM User Groups. We follow common
practice [51], and regard all scores below this threshold, as well as missing scores,
as negative feedback. For Amazon Grocery & Gourmet, we additionally perform
5-core item pruning before filtering the scores according to a threshold of 4.24.

3.4 Evaluation Protocol

We split each user’s data into 60% training data used for model training, 20%
validation data used for hyperparameter tuning, and 20% test data used for
evaluation. After hyperparameter tuning (see Sect. 3.5), to research the impact of
DP on personalized recommendations, we add DP to the training data (see Eq. 1)
and retrain the recommendation models to calculate the evaluation metrics (see
Sect. 3.2). Specifically, we retrain each model with five different random seeds and
average the evaluation metrics to cope for random fluctuations in the training
process. We repeat this procedure for multiple privacy budget values, i.e., ε ∈
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Table 2. Model hyperparameters used in our experiments (learning rate α, dropout
probability ρ, embedding dimensionality d, negative weight ω, L2 regularization factor
λ, number of propagation layers n, number of hidden units h).

Model MovieLens 1M LastFM User Groups Amazon Grocery & Gourmet

ENMF α = 0.01, ρ = 0.1, d = 32, ω = 0.25 α = 0.001, ρ = 0.25, d = 128, ω = 0.25 α = 0.001, ρ = 0.25, d = 64, ω = 0.25

LightGCN α = 0.0001, d = 128, n = 1, λ = 0.0001 α = 0.001, d = 128, n = 4, λ = 0.01 α = 0.001, d = 128, n = 2, λ = 0.001

MultVAE α = 0.01, ρ = 0.5, d = 64, h = 800 α = 0.001, ρ = 0.5, d = 128, h = 600 α = 0.0001, ρ = 0.5, d = 128, h = 600

{5, 4, 3, 2, 1, 0.1, 0.01}. To foster the reproducibility of our research, we publish
our source code2.

3.5 Recommendation Models and Parameter Settings

To cover different kinds of recommender systems, we experiment with a neural
matrix-factorization model, i.e., ENMF [12], a graph convolution network model,
i.e., LightGCN [25], and a variational autoencoder model, i.e., MultVAE [33].

– ENMF [12] is an efficient neural matrix-factorization model that does not
leverage negative sampling. Instead, a negative weighting scheme is used,
which benefits training efficiency and recommendation accuracy.

– LightGCN [25] is a lightweight graph convolution network, which, in contrast
to more complex approaches, only uses neighborhood aggregation and does
not include feature transformations or nonlinear activations.

– MultVAE [33] is a variational autoencoder that generates recommendations
based on a multinomial likelihood. This way, it aims to mimic the generative
process of implicit feedback data as prevalent in recommender systems.

For model training, we use Adam [27] to optimize the models for 5,000 epochs
with a batch size of 4,096, and we employ an early stopping threshold of 50.
We perform grid search for every model-dataset pair and determine the hyper-
parameters of the model with the highest Recall on the validation data (see
Table 2). Note that hyperparameter tuning is performed on the original training
data without DP. LightGCN requires negative samples and therefore, we sample
one negative feedback for each positive feedback uniformly at random. After a
careful inspection, we find that with the given hyperparameters, LightGCN can-
not produce personalized recommendations for Amazon Grocery & Gourmet. To
solve this, we manually adapt the learning rate to 0.001 and the batch size to
1,024. In all experiments, the top 10 ranked items are recommended to each user.

4 Results and Discussion

In this section, we present our results with respect to the three research questions.
First, we measure for how many users the recommendations differ when DP is

2 https://github.com/pmuellner/ImpactOfDP.

https://github.com/pmuellner/ImpactOfDP
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Table 3. Absolute values of the evaluation metrics when no DP is used. This serves
as baseline for our results in the remainder of this paper, which measure the relative
change of the evaluation metrics when DP is applied. For calculating the metrics, we
use all impacted users.

MovieLens 1M LastFM User Groups Amazon Grocery & Gourmet

Model Recall ↑ ARP ↓ PopLift ↓ Recall ↑ ARP ↓ PopLift ↓ Recall ↑ ARP ↓ PopLift ↓
ENMF 0.1697 0.2172 0.7084 0.0971 0.0836 1.8816 0.0932 0.0180 0.5143

LightGCN 0.1669 0.1958 0.5405 0.0925 0.0800 1.7585 0.0836 0.0259 1.1796

MultVAE 0.1694 0.1990 0.5657 0.0835 0.0576 0.9864 0.0643 0.0199 0.6734

applied, and we measure how strong these differences are (RQ1 ). Second, we
detail these differences with respect to the relative change of recommendation
accuracy (RQ2 ) and popularity bias (RQ3a). Plus, we investigate the impact of
DP on popularity bias from the perspective of two user groups: users that prefer
unpopular items and users that prefer popular items (RQ3b). As a baseline,
Table 3 includes the absolute values of our evaluation metrics without DP.

4.1 Differences Between Recommendations

First, we approach RQ1 and quantify how many users are impacted by DP (see
Table 4). We find that for all datasets, recommendation models, and ε values,
DP impacts nearly all users, i.e., different items are recommended than without
DP. For these impacted users, the average difference, i.e., the Jaccard distance
between the recommendations with and without DP, in most cases, lies above 0.5.
Thus, on average, more than every second item in the recommendation list would
not have been recommended without DP. Overall, the impact of DP increases
when ε becomes smaller, i.e., when more noise is added to the training data of the
recommendation models. Specifically, for ε = 0.1 and across all recommendation
models and datasets, more than 99.99% of users are impacted by DP, and the
average Jaccard distance lies between 0.8058 and 0.9743.

This gives strong evidence that DP fundamentally impacts the generated rec-
ommendations for nearly all users (RQ1).

4.2 Impact on Recommendation Accuracy

Next, we build on our results from RQ1, and study how DP’s impact on the
recommendation lists affects recommendation accuracy (RQ2 ). We find that
DP leads to a substantial drop in recommendation accuracy, as measured by
Recall (see Fig. 1). In contrast to MovieLens 1M and LastFM User Groups,
the recommendation accuracy for Amazon Grocery & Gourmet already drops
in case ε = 5, which is possibly due to DP being applied to the (on average)
small user profiles in this dataset (see Table 1). In case of ENMF and MultVAE
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Table 4. No. Users is the percentage of users that are impacted by DP and Avg. J.
is the average Jaccard distance between the recommendations with and without DP.
The worst results are given in bold. We find that nearly all users are impacted by DP
and that the recommendations substantially differ from those generated without DP
(RQ1 ).

MovieLens 1M LastFM User Groups Amazon Grocery & Gourmet

ε Model No. Users ↓ Avg. J. ↓ No. Users ↓ Avg. J. ↓. No. Users ↓ Avg. J. ↓
5 ENMF 99.41% 0.5118 98.06% 0.4988 99.96% 0.7872

LightGCN 97.40% 0.4207 99.14% 0.5112 99.94% 0.7382

MultVAE 99.71% 0.5903 99.68% 0.6983 100.00% 0.9204

2 ENMF 99.85% 0.5974 99.64% 0.5757 100.00% 0.8620

LightGCN 99.86% 0.6252 99.92% 0.6518 99.99% 0.8132

MultVAE 99.93% 0.6828 100.00% 0.7950 100.00% 0.9447

1 ENMF 99.99% 0.7006 99.95% 0.6858 100.00% 0.9253

LightGCN 99.99% 0.7352 99.99% 0.7464 100.00% 0.8775

MultVAE 100.00% 0.7592 100.00% 0.8408 100.00% 0.9567

0.1 ENMF 100.00% 0.8183 100.00% 0.8058 100.00% 0.9743

LightGCN 99.99% 0.8300 100.00% 0.8490 100.00% 0.9360

MultVAE 100.00% 0.8447 100.00% 0.9250 100.00% 0.9635

Fig. 1. DP’s impact on recommendation accuracy as measured by ΔRecall. DP leads
to a severe drop in recommendation accuracy. In particular, this drop becomes more
serious for small ε values that provide a high level of privacy. This corresponds to the
well-known accuracy-privacy trade-off (RQ2 ).

on MovieLens 1M, the recommendation accuracy increases slightly for large ε
values, which can be possibly due to the fact that the noise introduced by DP
acts as Tikhonov regularization for the model [9]. However, when more noise is
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added, i.e., ε < 3, the recommendation accuracy for these models and dataset
drops as well. Overall, the drop in recommendation accuracy gets worse when ε
becomes smaller. Specifically, for ε = 0.1 and across all recommendation models,
the recommendation accuracy drops by at least 37.39% (MovieLens 1M ), 48.00%
(LastFM User Groups), or 57.10% (Amazon Grocery & Gourmet). Since lower ε
values lead to higher levels of privacy, this corresponds to the well-known trade-
off between recommendation accuracy and privacy [8,59].

In summary, DP leads to a substantial drop in recommendation accuracy,
and this drop becomes more severe for smaller ε values (RQ2).

4.3 Impact on Popularity Bias

In this section, we study how DP impacts popularity bias (RQ3 ). First, in Fig. 2,
we monitor how DP impacts the average recommendation popularity (ARP) and
the popularity lift (PopLift). Then, we investigate DP’s impact on popularity
bias from the perspective of two user groups: users that prefer unpopular items
and users that prefer popular items.

Impact on Recommendation Popularity. We find that DP leads to a sub-
stantial increase with respect to ARP (see Fig. 2a). Specifically, the increase in
ARP gets worse, when ε becomes smaller. For example, for ε = 0.1 and across
all recommendation models, ARP increases by at least 19.75% (MovieLens 1M ),
47.00% (LastFM User Groups), or 132.85% (Amazon Grocery & Gourmet). We
investigate these differences in more detail, and find that the increase is especially
high for datasets, for which the baseline value without DP is small (see Table 3).
This means that without DP, also items of low popularity are recommended,
which are typically hard to recommend (cf. the item cold-start problem [46]).
With the noise introduced by DP, these items are even harder to recommend,
which increases the ARP value. Thus, more popular items are recommended
as ε becomes smaller, which indicates a trade-off between privacy and popular-
ity bias. In adddition to ARP, we also use PopLift to quantify popularity bias,
since it relates ARP to a user’s preference for popular items (see Fig. 2b). As in
case of ARP, also PopLift increases when the ε value becomes smaller, i.e., the
popularity of the recommended items increasingly mismatches the item popu-
larity distribution in the users’ profiles. Specifically, for ε = 0.1 and across all
recommendation models, PopLift increases by at least 36.16% (MovieLens 1M ),
28.49% (LastFM User Groups), or 128.38% (Amazon Grocery & Gourmet). This
means that as ε becomes smaller, there is an increasing mismatch between the
recommendation popularity and the item popularity distribution of the users.

Therefore, DP makes the recommendations more biased towards popular
items, which strongly overestimates the users’ preferences for popular items. This
underlines the important trade-off between privacy and popularity bias (RQ3a).

Disparate Impact on User Groups. Building upon our finding that DP
makes popularity bias worse, we finally investigate whether the strength of this
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(a) DP’s impact on ARP .

(b) DP’s impact on PopLift.

Fig. 2. DP’s impact on popularity bias as measured by ΔARP and ΔPopLift. We
find that DP increases ARP, which becomes more severe the smaller the ε value is
(see Fig. 2a). Plus, the recommendation popularity mismatches the item popularity
distribution in the user profiles (see Fig. 2b). Overall, this gives strong evidence that
DP makes popularity bias worse (RQ3 ).

effect differs between users that prefer popular items (i.e., Uhigh) and users that
prefer unpopular items (i.e., Ulow). For both user groups, PopLift increases for
small ε values (see Table 5). Similarly, also the Gap between both user groups’
PopLift values grows when ε becomes smaller, which suggests that there exists a
disparate impact of DP (cf. [55]). We investigate Gap and PopLift in more detail
and find that in general, PopLift increases more severely for Ulow than for Uhigh.
This can be regarded as a “poor get poorer” effect, since these disadvantaged
users already experience strong popularity bias without DP. However, in case
of MultVAE and LastFM User Groups, PopLift is higher for Uhigh than for
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Table 5. The absolute PopLift values for users that prefer unpopular items (Ulow)
and users that prefer popular items (Uhigh), and the Gap, i.e., the absolute difference,
between both. The worst results are given in bold. Popularity bias increases for both
user groups with decreasing ε, but as Gap suggests, popularity bias increases especially
for users that prefer unpopular, niche items (RQ3b).

MovieLens 1M LastFM User Groups Amazon Grocery & Gourmet

PopLift ↓ Gap ↓ PopLift ↓ Gap ↓ PopLift ↓ Gap ↓
ε Method Ulow/Uhigh Ulow/Uhigh Ulow/Uhigh

No DP ENMF 1.0923/0.4800 0.6124 4.1028/1.1578 2.9450 1.4079/0.0845 1.3235

LightGCN 0.4225/0.5296 0.1072 2.7848/1.3273 1.4576 1.8253/0.7109 1.1144

MultVAE 0.6247/0.4901 0.1347 0.7441/0.9092 0.1651 1.3910/0.2259 1.1650

5 ENMF 1.0940/0.4903 0.6037 4.0972/1.1629 2.9343 1.4043/0.0896 1.3147

LightGCN 0.4625/0.5566 0.0940 2.7952/1.2790 1.5162 1.7539/0.6766 1.0773

MultVAE 0.6538/0.5227 0.1311 0.7244/0.8928 0.1685 1.4372/0.2783 1.1589

2 ENMF 1.2088/0.5147 0.6941 4.5492/1.2334 3.3158 1.4977/0.1380 1.3597

LightGCN 0.7447/0.6206 0.1241 3.1516/1.2894 1.8623 2.0951/0.7736 1.3215

MultVAE 0.8409/0.5814 0.2595 0.1894/1.0524 0.8629 1.4175/0.2014 1.2161

1 ENMF 1.3658/0.5612 0.8046 5.2311/1.3309 3.9001 1.5723/0.1517 1.4206

LightGCN 1.1633/0.7265 0.4368 3.8118/1.5267 2.2851 3.1031/1.2728 1.8303

MultVAE 1.0044/0.6233 0.3811 0.3395/1.3139 0.9744 6.0433/2.0317 4.0117

0.1 ENMF 1.5276/0.6445 0.8831 5.7217/1.4448 4.2769 4.9652/1.2375 3.7277

LightGCN 1.7767/0.8415 0.9352 5.7233/1.6460 4.0773 4.5163/1.5600 2.9563

MultVAE 1.1595/0.6370 0.5225 1.0760/1.7873 0.7113 7.5308/2.3216 5.2092

Ulow. It is known that for some datasets3 MultVAE is able to recommend many
unpopular items from the long-tail [5]. This results in lower ARP values than
in case of the other datasets, i.e., 0.0184 for Ulow and 0.0933 for Uhigh (without
DP), which especially benefits Ulow. Therefore, this helps to maintain a low
PopLift value for Ulow, and may explain why in this specific case, PopLift is
lower for Ulow than for Uhigh.

Overall, DP makes popularity bias worse for both user groups, but most
severely for users that prefer unpopular items (RQ3b).

4.4 Discussion

Overall, DP impacts nearly all users (RQ1 ) and leads to reduced recommenda-
tion accuracy (RQ2 ) and increased popularity bias (RQ3 ). Plus, especially users
that prefer unpopular items experience a sharp increase in popularity bias.

However, the impact of DP strongly depends on the level of privacy that shall
be ensured, i.e., the ε value. This suggests that carefully choosing ε is essential
in balancing the trade-off between privacy, accuracy, and popularity bias (RQ2,
RQ3 ). Moreover, DP’s impact on popularity bias is especially severe for users

3 No clear pattern across datasets can be observed [5] and thus, this behavior of
MultVAE needs to be researched in the future.
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that prefer unpopular items (RQ3b). Thus, the trade-off between privacy, rec-
ommendation accuracy, and popularity bias can differ between groups of user,
which underlines that group-specific mitigation strategies may be required. We
hope that our results can inform research in this direction.

5 Conclusion and Future Work

In this work, we investigated in which ways Differential Privacy (DP) impacts
personalized recommendations. In experiments with three datasets and three
recommendation algorithms, we added DP to the training data of state-of-the-
art recommendation models, and found that nearly all users’ recommendations
change when DP is applied. Also, for higher levels of privacy, recommendation
accuracy drops substantially while popularity bias increases. In addition, we
detail DP’s impact on popularity bias and observe a “poor get poorer” effect:
DP exacerbates popularity bias more severely for users who already experience
strong popularity bias without DP, i.e., users who prefer unpopular items. Over-
all, our work further researches the trade-off between recommendation accuracy
and privacy and, in addition, provides novel insights on the important trade-off
between popularity bias and privacy.

Future Work. In the future, we plan to research how users that are espe-
cially disadvantaged by DP, i.e., users that prefer unpopular items, can reach
a satisfactory trade-off between recommendation accuracy, popularity bias, and
privacy. Specifically, we aim to test whether popularity bias mitigation strategies
can help to prohibit the exacerbation of popularity bias for disadvantaged user
groups. One limitation of this work is that we investigated the impact of DP
only on the users, but not on other stakeholders of the recommender system.
Thus, we plan to investigate the impact of DP also on providers and creators of
items [1]. Additionally, we aim to evaluate DP-based recommendations also in
more privacy-sensitive domains such as job recommendations [30].
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482 P. Müllner et al.

48. Schedl, M., Bauer, C., Reisinger, W., Kowald, D., Lex, E.: Listener modeling and
context-aware music recommendation based on country archetypes. Front. Artif.
Intell. 3, 508725 (2021)

49. Lam, S.K., Frankowski, D., Riedl, J.: Do you trust your recommendations? an
exploration of security and privacy issues in recommender systems. In: Müller,
G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 14–29. Springer, Heidelberg (2006).
https://doi.org/10.1007/11766155 2

50. Sun, J.A., Pentyala, S., Cock, M.D., Farnadi, G.: Privacy-preserving fair item rank-
ing. In: Kamps, J., et al. (eds.) ECIR 2023, vol. 13981, pp. 188–203. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-28238-6 13

51. Sun, Z., et al.: Are we evaluating rigorously? benchmarking recommendation for
reproducible evaluation and fair comparison. In: Proceedings of the 14th ACM
Conference on Recommender Systems (RecSys), pp. 23–32 (2020)

52. Weinsberg, U., Bhagat, S., Ioannidis, S., Taft, N.: Blurme: inferring and obfuscating
user gender based on ratings. In: Proceedings of the 6th ACM Conference on
Recommender Systems (RecSys), pp. 195–202 (2012)

53. Xin, X., et al.: On the user behavior leakage from recommender system exposure.
ACM Trans. Inf. Syst. (TOIS) 41(3), 1–25 (2023)

54. Xin, Y., Jaakkola, T.: Controlling privacy in recommender systems. In: Proceedings
of the 27th International Conference on Neural Information Processing Systems
(NeurIPS), pp. 2618–2626. MIT Press, Cambridge (2014)

55. Yang, Z., Ge, Y., Su, C., Wang, D., Zhao, X., Ying, Y.: Fairness-aware differen-
tially private collaborative filtering. In: Companion Proceedings of the ACM Web
Conference (TheWebConf), pp. 927–931 (2023)

56. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair represen-
tations. In: International conference on machine learning (ICML), pp. 325–333
(2013)

57. Zhang, M., et al.: Membership inference attacks against recommender systems. In:
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS), pp. 864–879 (2021)

58. Zhang, S., Yin, H.: Comprehensive privacy analysis on federated recommender
system against attribute inference attacks. IEEE Trans. Knowl. Data Eng. (TKDE)
(2023)

59. Zhu, T., Li, G., Ren, Y., Zhou, W., Xiong, P.: Differential privacy for neighborhood-
based collaborative filtering. In: Proceedings of the IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining (ASONAM), pp.
752–759 (2013)

https://doi.org/10.1007/11766155_2
https://doi.org/10.1007/978-3-031-28238-6_13

	The Impact of Differential Privacy on Recommendation Accuracy and Popularity Bias
	1 Introduction
	2 Related Work
	3 Method
	3.1 Differential Privacy for Implicit Feedback
	3.2 Evaluation Metrics
	3.3 Datasets
	3.4 Evaluation Protocol
	3.5 Recommendation Models and Parameter Settings

	4 Results and Discussion
	4.1 Differences Between Recommendations
	4.2 Impact on Recommendation Accuracy
	4.3 Impact on Popularity Bias
	4.4 Discussion

	5 Conclusion and Future Work
	References


