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1 Introduction

Nowadays, recommender systems are one of the most widely used instantiations

of machine learning and artificial intelligence. Thus, these systems accompany us in

our daily online experience and have become an integral part of our digital life for

supporting us in finding relevant information in information spaces that are too big

or complex for manual filtering (Ricci et al., 2010; Burke et al., 2011; Jannach et al.,

2016). Since the first deployments of recommendation algorithms (Resnick et al., 1994;

Resnick and Varian, 1997), recommender systems analyze past usage behavior (e.g., clicks

or ratings) in order to build user models, and to suggest items to users. Recommender

systems are employed in various domains, ranging from entertainment domains, such

as music (Lex et al., 2020; Schedl et al., 2021) and movies (Harper and Konstan, 2015),

to more critical domains such as the job market (Lacic et al., 2020). Apart from that,

different types of algorithms have been employed to develop recommender systems,

ranging from collaborative filtering (Ekstrand et al., 2011), content-based filtering (Lops

et al., 2010), hybrid approaches (Burke, 2002), theory-driven algorithms [e.g., based on

cognitive models (Lacic et al., 2014; Kowald et al., 2015)], to neural approaches (Zhang

et al., 2019; Chen et al., 2023).

The aim of the “Reviews in recommender systems” Research Topic is to highlight recent

advances in the broad field of recommender systems, including important topics such as

fairness (Kowald et al., 2020; Wang et al., 2023), privacy (Friedman et al., 2015; Muellner

et al., 2021), and multi-stakeholder objectives (Abdollahpouri and Burke, 2019), while

emphasizing novel directions and possibilities for future research. In total, this Research

Topic consists of nine review articles surveying the literature in a specific subfield of

recommender systems. More concretely, the editors of this Research Topic have been able

to accept six full-length and three mini review articles. The following section gives a short

overview of these articles.

2 Research Topic content

In a mini review article, Müllner et al. surveyed the current landscape of differential

privacy in collaborative filtering-based recommender systems. In total, the authors

have reviewed 26 publications, and found that in most cases, differential privacy is
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applied to the user representation (i.e., the input data of the

recommender system) rather than to recommendation model

updates or to phases after the training. Additionally, the authors

stated that most papers investigate differential privacy on datasets

gathered from MovieLens and Last.fm, and thus, that more

research is needed for privacy-aware recommender systems in

sensitive domains such as the job market or finance. Next, Jannach

and Abdollahpouri explore the multifaceted landscape of multi-

objective recommender systems, identifying the need to balance

diverse and often conflicting objectives such as user satisfaction,

stakeholder interests, and long-term goals of stakeholders. The

authors present a taxonomy categorizing these objectives into

recommendation quality, multi-stakeholder perspectives, temporal

considerations, user experience, and system engineering challenges.

The study illustrates the complexity of optimizing recommender

systems in real-world applications, emphasizing the importance

of addressing multiple objectives to enhance recommendation

relevance, diversity, and overall system effectiveness.

Banerjee et al. delve into the challenges and potential strategies

for ensuring fairness in Tourism Recommender Systems (TRS),

emphasizing the multi-stakeholder nature of these systems. They

categorize stakeholders based on fairness criteria, review state-

of-the-art research from various perspectives, and highlight the

complexities of balancing individual and collective interests.

The paper concludes that achieving fairness in TRS involves

navigating trade-offs between stakeholder interests, illustrating the

necessity for innovative solutions that consider the environmental

impact and societal concerns alongside traditional user and

provider objectives. In the next mini-review, Loepp investigates the

increasingly prevalent multi-list user interfaces in recommender

systems, particularly focusing on carousel-based interfaces like

those used by Netflix and Spotify. The review highlights the scarcity

of research on optimizing these carousels for user interaction and

satisfaction, despite their common use. Based on 18 reviewed

research papers, the author identifies gaps in understanding

user behavior and interface design, and proposes future research

directions to enhance user experience through improved design

and personalization of carousel recommendations.

Kumar et al. provide an in-depth review of fairness in

recruitment-related recommender systems (RRSs), dissecting the

balance between technical advancements and legal compliance.

They delve into various fairness definitions (e.g., demographic

parity), metrics (e.g., false positive rates between different

demographic groups), and debiasing strategies (e.g., post-

processing to alter the algorithm’s output to ensure fairness)

as well as compare them to existing EU and US employment

laws. The survey spotlights the nuanced challenges of mitigating

algorithmic bias and discrimination within RRSs, advocating for a

multidisciplinary approach to develop more equitable and legally

compliant hiring technologies. Additionally, Felfernig et al. explore

the potential of recommender systems to support the achievement

of the 17 United Nations’ Sustainability Development Goals

(SDGs). The review addresses the utilization of AI to recommend

actions and alternatives aligned with sustainability objectives.

The paper discusses various recommender system types, their

application across all SDGs, as well as identifies open research

issues for future exploration. The authors show the significance of

recommender systems in promoting sustainability, offering both

current insights and directions for ongoing research.

In this mini-review, Duricic et al. explore the integration of

beyond-accuracy metrics (i.e., diversity, serendipity, and fairness)

into recommender systems based on Graph Neural Networks

(GNNs). They emphasize the importance of these metrics in

enhancing user satisfaction, beyond mere accuracy. Furthermore,

they examine recent advancements and methodologies in

GNNs that address these dimensions, highlighting the balance

between recommendation accuracy and beyond-accuracy

objectives. Next, Lubos et al. present a review of state-of-

the-art video recommender systems (VRS), covering a broad

range of algorithms, applications, and unresolved research

challenges in the field. They delve into various approaches

to VRS, including content-based, collaborative filtering, and

hybrid systems, and discuss the importance of diverse content

representations and evaluation metrics. Based on the analysis

of 6 different application domains, they highlight the potential

for future advancements in VRS, emphasizing the need for

innovative solutions to improve the accuracy and effectiveness

of personalized video recommendations, thereby serving as a

valuable resource for both researchers and practitioners in the

video domain. Finally, Uta et al. offer a comprehensive overview

of knowledge-based recommender systems, distinguishing them

from traditional collaborative and content-based approaches by

their ability to utilize semantic user preferences, item knowledge,

and recommendation logic. These systems are particularly

beneficial for complex item types, as they can dynamically

adapt to user preferences through dialogue and constraint-based

recommendations. The review also identifies future research

directions, emphasizing the integration of knowledge-based

technologies in recommender systems.

Taken together, across all review articles, we see that

beyond-accuracy objectives and trustworthiness aspects of

recommender systems are currently of high interest in the

recommender systems research community. This includes

aspects related to fairness, bias, privacy, diversity, serendipity,

sustainability, multi-stakeholder objectives, and user interface

choices. We hope that the review articles presented in this

Research Topic will inform future research endeavors in

this field.
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