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Abstract. In this chapter, we discuss how to utilize human memory
models for the task of modeling music preferences for recommender sys-
tems. Therefore, we discuss the theoretical underpinnings of using cog-
nitive models for user modeling and recommender systems in order to
introduce a model based on the cognitive architecture ACT-R to predict
the music genre preferences of users in the Last.fm platform. By im-
plementing the declarative memory module of ACT-R, comprising past
usage frequency and recency, as well as the current semantic context,
we model the music relistening behavior of users. We evaluate our ap-
proach using three user groups that we identify in Last.fm, namely (i)
low-mainstream music listeners, (ii) medium-mainstream music listen-
ers, and (iii) high-mainstream music listeners. We find that our approach
provides significantly higher prediction accuracy than various baseline al-
gorithms for all three user groups, and especially for the low-mainstream
user group. Since our approach is based on a well-established human
memory model, we also discuss how this contributes to the transparency
of the calculated predictions.

Keywords: User Modeling, Human Memory Theory, ACT-R, Music Recom-
mendation, Recommender Systems, Transparency

1 Introduction

Computational models of user preferences are important elements of music rec-
ommender systems [52] to tailor recommendations to the preferences of the user.
Such user models are typically derived from the listening behavior of the users,
i.e., their interactions with music artifacts, content features of music [64], or
hybrid combinations of both. Research in music psychology [38] has shown that
a wide range of factors impact music preferences [52], such as users’ emotional
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state [9,15], a user’s current context [44], or a user’s personality [44,50]. Several
aspects make the modeling of music preferences challenging, such as, e.g., that
music consumption is context-dependent [48] and serves various purposes for lis-
teners [53]. Also, related research [20, 24, 26] has verified that traditional music
recommendation approaches suffer from popularity bias, i.e., they are biased to
the mainstream that is prevalent in a music community. As a result, listeners
of non-mainstream music receive less relevant recommendations compared to
listeners of popular, mainstream music [6, 40,46,47].

In our own previous research [23], we introduced a psychology-inspired ap-
proach to model and predict the music genre preferences of users. We based our
approach on findings from music psychology that show that music liking is posi-
tively influenced by prior exposure to the music [41,54]. This has been attributed
to the mere exposure effect or familiarity principle [63], i.e., users tend to estab-
lish positive preferences for items to which they are frequently and consistently
exposed. Our idea was to computationally model prior exposure to music genres
using the activation equation of human memory from the cognitive architecture
Adaptive Control of Thought–Rational (ACT-R) [2, 4]. The activation equation
determines the usefulness of a memory unit (i.e., its activation) for a user in the
current context, based on how frequently and recently a user accessed it in the
past as well as how important this unit is in the current context. In particular,
we utilized the activation equation of ACT-R for music genre predictions. The
equation enabled us to tune the predictions to the current context of the user.
As the current context, we utilized the set of genres that are assigned to the
most recently listened artist of a user.

On a publicly available dataset of Last.fm music listening histories, we mod-
eled the genre preferences of users from three different groups, which we ex-
tracted using behavioral data in the form of music listening events: (i) LowMS,
i.e., listeners of niche music (low mainstreaminess), (ii) MedMS, i.e., the middle
tier of listeners (medium mainstreaminess), and (iii) HighMS, i.e., listeners of
mainstream music (high mainstreaminess). We introduced the ACTu,a approach
that employs the activation equation to take into account the current context
of the user, which we defined as the user’s current genre preference. We com-
pared the efficacy of ACTu,a to a variant, i.e., BLLu, that uses only a part of
the activation equation (the base-level learning (BLL) component) to model the
past usage frequency (i.e., popularity) and recency (i.e., time). Furthermore, we
compared both approaches to five baselines, including two collaborative filtering
variants, mainstream-aware genre modeling, popularity-aware genre modeling,
and time-based genre modeling. Here, we found that both BLLu and ACTu,a

outperform the five baseline methods in all three groups, with ACTu,a achieving
the significantly highest performance. Our results also showed that with both
BLLu and ACTu,a, we could specifically improve the prediction performance
for the users in the LowMS group, i.e., the music consumers whose prediction
quality typically suffers the most from popularity bias.

In this chapter, we extend our previous work [23] with the goal of discussing
how to utilize human memory models for a transparent modeling process of
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music preferences for recommender systems. Therefore, in Section 2, we provide
a general description of the ACT-R cognitive architecture. This section provides
the theoretical underpinnings for using human memory theory to model music
preferences of users as presented in [23], and in Sections 3 and 4. Furthermore, in
Section 5, we discuss potential extensions of our prediction model by reviewing
additional components of ACT-R. Finally, in Section 6, we conclude this chapter
and discuss possibilities for future research.

2 Theoretical Underpinnings

Cognitive Science evolved as a research field that combines knowledge of different
disciplines, namely Psychology, Philosophy, Linguistics, Anthropology, Neuro-
science and Computer Science, in a multi- or interdisciplinary manner. Among
the core hypotheses of this field is the belief that processes and states of the
human mind can be emulated via computer models [39]. On the basis of this
fundamental assumption, cognitive modeling describes the development of exe-
cutable computer models that approximate cognitive processes, mechanisms, and
representations [57]. Cognitive models are divided into three main categories: (i)
computational, (ii) mathematical, and (iii) verbal-conceptual models [13].

In principle, the three types of models differ with respect to their detail of
formalization: Computational models are algorithmic descriptions that use pro-
cesses to emulate tasks of human cognition. Mathematical models are considered
a subset of computational models. They consist of mathematical equations that
formalize relationships between entities that interact in human cognition tasks.
Despite their typical lack of process details, they can mostly be implemented as
computer models. Verbal-conceptual models, on the other hand, describe such
cognitive processes, entities and their relationships in a relatively natural lan-
guage [57]. In this work, we focus on computational models, and more precisely,
the cognitive architecture ACT-R, which stands short for “Adaptive Control of
Thought – Rational” and has been previously suggested to model human cogni-
tion in Human-Computer Interaction (HCI) tasks [7].

ACT-R is a cognitive architecture developed by John Robert Anderson [2].
ACT-R defines and formalizes the basic cognitive operations of the human mind
(e.g., access to information in human memory). It is grounded on the assump-
tion that all components in a human mind act in concert to generate behavior.
To that end, the ACT-R theory describes how different parts of humans’ minds
work together and, based on this, proposes an architecture built from a number
of collaborating modules. The so-called production system coordinates the infor-
mation flow between different modules in the center of the model. Each module
is provided with a buffer containing its most important information to reduce
the working load on the production system. This is the data the production
system is aware of and reacts to. Figure 1 schematically illustrates the main
components of ACT-R that explain a memory perspective. In general, ACT-R
differs between short-term memory modules, such as the working memory mod-
ule, and long-term memory modules, such as the declarative and procedural
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Fig. 1. Schematic illustration of ACT-R. In our work, we focus on the activation equa-
tion of the declarative memory module.

memory modules. Using a sensory register (i.e., the ultra-short-term memory),
the encoded information is passed to the short-term working memory module,
which interacts with the long-term memory modules. In the declarative mem-
ory, the encoded information can be stored, and already stored information can
be retrieved. In procedural memory, the information can be matched against
stored rules, which may lead to actions [62]. Thus, declarative memory holds
factual knowledge (e.g., what something is), and procedural memory consists of
sequences of actions (e.g., how to do something).

In this work, we present a transparent music genre modeling and prediction
approach based on the declarative memory module of ACT-R. In particular, we
built on the activation equation that formulates the availability of elements in a
person’s declarative memory, which is described as part of the ACT-R theory [2].
The activation equation is commonly used to model memory recall tasks [37],
and has been proposed in the context of tag recommendations [21, 27], item
recommendations [29, 43], and hybrid recommendations [31, 36], as well as for
social semantic technologies [18]. A thorough theoretical survey and derivation
of the activation equation is presented in [4].

3 Data and Approach

In this section, we describe the Last.fm dataset as well as our transparent music
genre modeling and prediction approaches. This section is mainly based on our
previous work [23].
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3.1 Dataset

For our experiments, we use the publicly available LFM-1b dataset4 of music
listening information shared by users of the online music platform Last.fm. LFM-
1b contains listening histories of more than 120,000 users, which sums up to over
1.1 billion listening events (LEs) collected between January 2005 and August
2014. Each LE contains a user identifier, the artist, the album, the track name,
and a timestamp [45]. Furthermore, the LFM-1b dataset contains demographic
data of the users such as country, age, gender, and a mainstreaminess score,
which is defined as the overlap between a user’s personal listening history and
the aggregated listening history of all Last.fm users in the dataset. This overlap
is measured using a symmetric variant of Kullback-Leibler divergence. Thus, the
mainstreaminess score reflects a user’s inclination to music listened to by the
Last.fm mainstream listeners (i.e., the “average” Last.fm listener) [51].

User groups. In order to study different types of users, we use this mainstreami-
ness score to split the LFM-1b dataset into three equally sized user groups based
on their mainstreaminess (i.e., low, medium, and high). Specifically, we sort all
users based on their mainstreaminess score and assign the 1,000 users with the
lowest scores to the low-mainstream group (i.e., LowMS ), the 1,000 users with
scores around the median mainstreaminess (= .379) to the medium-mainstream
group (i.e., MedMS ), and the 1,000 users with the highest scores to the high-
mainstream group (i.e., HighMS ).

We consider only users with a minimum of 6,000 and a maximum of 12,000
LEs. We choose these thresholds based on the average number of LEs per user
in the dataset, which is 9,043, as well as the kernel density distribution of the
data. With this method, on the one hand, we exclude users with too little data
available for training the proposed models (i.e., users with less than 6,000 LEs).
On the other hand, we exclude so-called power listeners (i.e., users with more
than 12,000 LEs) that might distort our results. Table 1 summarizes the statistics
and characteristics of our three user groups. We see that, even if we only consider
1,000 users per group, we have a sufficient amount of LEs, i.e., between 6.9 to 8.3
million, to train and test our music genre modeling and prediction approaches.
Further characteristics of our user groups are as follows:

(i) LowMS. The LowMS group represents the |U | = 1,000 users with
the smallest mainstreaminess scores. These users have an average mainstreami-
ness value of Avg.MS = .125. LowMS contains |A| = 82,417 distinct artists,
|LE| = 6,915,352 listening events, |G| = 931 genres, and |GA| = 14,573,028
genre assignments.

(ii) MedMS. The MedMS group consists of the |U | = 1,000 users with
mainstreaminess scores around the median and, thus, lying between the ones of
the LowMS and HighMS groups. This group has an average mainstreaminess
value of Avg.MS = .379. The majority of dataset statistics of this group lies
between the ones of the LowMS and HighMS users.

4 http://www.cp.jku.at/datasets/LFM-1b/
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Table 1. Dataset statistics for the LowMS, MedMS, and HighMS Last.fm user groups.
Here, |U | is the number of distinct users, |A| is the number of distinct artists, |G| is the
number of distinct genres, |LE| is the number of listening events, |GA| is the number
of genre assignments, |GA|/|LE| is the average number of genre assignments per LE,
|G|/|U | is the average number of genres a user has listened to, and Avg.MS is the
average mainstreaminess value.

User Group |U | |A| |G| |LE| |GA| |GA|/|LE| |G|/|U | Avg.MS

LowMS 1,000 82,417 931 6,915,352 14,573,028 2.107 85.771 .125

MedMS 1,000 86,249 933 7,900,726 20,264,870 2.565 126.439 .379

HighMS 1,000 92,690 973 8,251,022 22,498,370 2.727 186.010 .688

(iii) HighMS. The HighMS group represents the |U | = 1,000 users in the
LFM-1b dataset with the highest mainstreaminess scores (Avg.MS = .688).
These users listen to the highest number of distinct genres on average (i.e.,
|G|/|U | = 186.010), indicating that music which is considered mainstream is
quite diverse on Last.fm. Also, this user group exhibits the highest number of
distinct genres (|G| = 973).

Additionally, we investigate the most frequent countries of the users. Here,
for all three groups, the United States (US) is the dominating country. The share
of US users increases with the mainstreaminess, i.e., while this share is only 14%
for LowMS and 18% for MedMS, it is already 22% for HighMS. Interestingly,
Russia (RU, 13%), Poland (PL, 9%), and Japan (JP, 8%) are frequent in the
LowMS group, while the United Kingdom (UK) contributes a substantial share
in the other two groups (9% for MedMS and 14% for HighMS). Germany (DE)
is among the most frequently occurring countries in all three groups (10% for
LowMS and HighMS, 8% for MedMS); Brazil (BR) can only be found among the
most popular countries in the MedMS group (8%); and the Netherlands (NL,
5%) as well as Spain (ES, 4%) can only be found in the HighMS group.

Genre mapping. For mapping music genres to artists, we use an extension of
the LFM-1b dataset, namely the LFM-1b UGP dataset [49], which describes the
genres of an artist by leveraging social tags assigned by Last.fm users. Specifi-
cally, LFM-1b UGP contains a weighted mapping of 1,998 music genres available
in the online database Freebase5 to Last.fm artists. This database includes a fine-
grained representation of musical styles, including genres such as “Progressive
Psytrance” or “Pagan Black Metal”.

The genre weightings for any given artist correspond to the relative frequency
of tags assigned to that artist in Last.fm. For example, for the artist “Metallica”,
the top tags and their corresponding relative frequencies are “thrash metal”
(1.0), “metal” (.91), “heavy metal” (.74), “hard rock” (.41), “rock” (.34), and
“seen live” (.3). From this list, we remove all tags that are not part of the 1,998
Freebase genres (i.e., “seen live” in our example) as well as all tags with a relative
frequency smaller than .5 (i.e., “hard rock” and “rock” in our example). Thus,

5 https://developers.google.com/freebase/ (no longer maintained)
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for “Metallica”, we end up with three genres, i.e., “thrash metal”, “metal” and
“heavy metal”.

3.2 Approach

Our approach focuses on the declarative part of the cognitive architecture ACT-
R [2], which contains the activation equation of human memory. The activation
equation determines the usefulness, i.e., the activation level Ai, of a memory
unit i (e.g., a music genre in our case) for a user u in the current context. It is
given by:

Ai = Bi +
∑
j

Wj · Sj,i (1)

Here, the Bi component represents the base-level activation and quantifies the
general usefulness of the unit i by considering how frequently and recently it has
been used in the past. It is given by the base-level learning (BLL) equation:

Bi = ln

 n∑
j = 1

t−d
j

 (2)

where n is the frequency of i’s occurrences and tj is the time since the jth

occurrence of i. The exponent d accounts for the power-law of forgetting, which
means that each unit’s activation level caused by the jth occurrence decreases
in time according to a power function [2].

The second component (right addend) of Equation 1 represents the associa-
tive activation that tunes the base-level activation of the unit i to the current
context. The context is given by any contextual element j that is relevant for
the current situation. In the case of a music recommender system, that could
be a music genre that the user prefers in the current situation. Through learned
associations, the contextual elements are connected with i and can increase i’s
activation depending on the weight Wj and the strength of association Sj,i.

Modeling and Predicting Music Genre Preferences For a transparent
modeling and prediction approach, we investigate two algorithms: BLLu based
on the BLL equation to model the past usage frequency (i.e., popularity) and
recency (i.e., time), and ACTu,a based on the full activation equation to also
take the current context into account.

We start with BLLu and thus, with defining the base-level activation B(g, u)
for genre g and user u by utilizing the previously defined BLL equation:

B(g, u) = ln

 n∑
j = 1

t−d
u,g,j

 (3)

Here, g is a genre user u has listened to in the past, and n is the number of
times u has listened to g. Further, tu,g,j is the time in seconds since the jth LE
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(a) User group: LowMS
Linear regression: α = -1.480
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(b) User group: MedMS
Linear regression: α = -1.574
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(c) User group: HighMS
Linear regression: α = -1.587

Fig. 2. Calculation of the BLL equation’s d parameter. On a log-log scale, we plot the
relistening count of the genres over the time since their last LEs. We set d to the slopes
α of the corresponding linear regression lines.

of g by u, and d is the power-law decay factor, which we identify using a similar
method as used in [25]. Thus, in Figure 2, for all LEs and genres in our dataset,
we plot the relistening count of a genre g over the time since the last LE of g.
Then, we set d to the slope α of the linear regression lines of this data, which
leads to 1.480 for LowMS, 1.574 for MedMS, and 1.587 for HighMS.

The resulting base-level activation values B(g, u) are then normalized using
a simple softmax function in order to map them onto a range of [0, 1] that sums
up to 1 [22,25]:

B′(g, u) =
exp(B(g, u))∑

g′∈Gu

exp(B(g′, u))
(4)
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g1

Ranking after calculating the 
base level activation 
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Sc,g1

t2

t1

Wc

B(g2,u) A(g2,u,a)

g2

B(g2,u)

g1

Fig. 3. Example illustrating the difference between BLLu (left panel) and ACTu,a

(right panel) based on [59]. Here, unfilled nodes represent target genres g1 and g2,
and black nodes represent genres of the last artist listened to by the target user (i.e.,
contextual genres). For g1 and g2, the node sizes represent the activation levels and
for the contextual genres, the node sizes represent the attentional weights Wc. The
association strength Sc,g is represented by the edge lengths. While BLLu determines
a higher activation level for g1 than for g2, ACTu,a gives a higher activation level to g2
than to g1 by also considering the associative association based on the current context.

Here, Gu is the set of distinct genres listened to by u. Finally, BLLu predicts

the top-k genres G̃k
u with the highest B′(g, u) values to u:

G̃k
u =

k
argmax
g∈Gu

(B′(u, g))︸ ︷︷ ︸
BLLu

(5)

To investigate not only the factors of frequency and time but also the current
context by means of an associative activation, we implement the full activation
equation (see Equation 1) in the form of:

A(g, u, a) = B′(g, u) +
∑
c∈Ga

Wc · Sc,g (6)

where the first part represents the base-level activation by means of the BLL
equation and the second part represents the associative activation.

To calculate the associative activation and, thus, to model a user’s current
context, we incorporate the set of genres Ga assigned to the most recently lis-
tened to artist a by the user u. When applying this equation in the context of
recommender systems, related literature [60] suggests using a measure of normal-
ized co-occurrence to represent the strength of an association Sc,g. Accordingly,
we define the co-occurrence between two genres as the number of artists to which
both genres are assigned. We normalize this co-occurrence value according to the
Jaccard coefficient:

Sc,g =
|Ac ∩Ag|
|Ac ∪Ag|

(7)
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where Ac is the set of artists to which any genre c of the current context (i.e.,
any genre of the artist most recently listened to) is assigned, and Ag is the set of
artists to which genre g is assigned. Thus, we set the number of times two genres
co-occur into relation with the number of times in which at least one of the two
genres appears. In this work, we set the attentional weight Wc of context-genre
c to 1. By doing so, we give equal weights to all genres assigned to an artist,
which avoids down-ranking of less popular, but perhaps more specific, and hence
more valuable, genres.

Finally, we normalize the A(g, u, a) values using the aforementioned softmax

function and predict the top-k genres G̃k
u with the highest A′(g, u, a) values for

a given user u and the genres of the user’s most recently listened artist a (i.e.,
the current context):

G̃k
u =

k
argmax
g∈Gu

(A′(u, g, a))︸ ︷︷ ︸
ACTu,a

(8)

We further illustrate the difference between BLLu and ACTu,a in the exam-
ple of Figure 3 [59] by showing the additional impact of the associative activation
defined by the second component of the activation equation. As defined, this as-
sociative activation is evoked by the current context (i.e., the genres of the last
artist the target user has listened to).

The left panel of Figure 3 shows two genres, g1 and g2, with different base-
level activation levels (illustrated by the circle size). Thus, according to BLLu,
g1 reaches a higher base-level activation, which means a better rank, than g2.
This relationship changes in the right panel of Figure 3, where we consider the
influence of the genres in the current context (illustrated by the black nodes).
Specifically, depending on the weights Wc (represented by the size of the black
nodes) and strength of association Sc,g (represented by the length and direction
of the edges), the genres in the current context spread additional associative
activation to the genres g1 and g2. Now, according to ACTu,a, g2 receives stronger
associative activation than g1, which also leads to a better rank.

4 Experiments and Results

In this section, we describe our experimental setup, i.e., the baseline algorithms,
the evaluation protocol and metrics, as well as the results of our experiments.
This section is mainly based on our previous work [23].

4.1 Baseline Algorithms

We compare the BLLu and ACTu,a approaches to five baseline algorithms:

Mainstream-based baseline: TOP . The TOP approach models a user u’s
music genre preferences using the overall top-k genres of all users (i.e., the main-
stream) in u’s user group (i.e., LowMS, MedMS, HighMS). This is given by:

G̃k
u =

k
argmax

g∈G
(|GAg|) (9)
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Here G̃k
u denotes the set of k predicted genres, G the set of all genres, and |GAg|

corresponds to the number of times g occurs in all genre assignments GA of u’s
user group.

User-based collaborative filtering baseline: CFu. User-based collaborative
filtering-based approaches aim to find similar users for the target user u (i.e.,
the set of neighbors Nu) and predict the genres these similar users have listened
to in the past [56]. CFu is given by:

G̃k
u =

k
argmax
g∈G(Nu)

(∑
v∈Nu

sim(Gu, Gv) · |GAg,v|
)

(10)

where G̃k
u denotes the set of k predicted genres for user u, G(Nu) are the genres

listened to by the set of neighbors Nu,
6 sim(Gu, Gv) is the cosine similarity be-

tween the genre distributions of user u and neighbor v. Finally, |GAg,v| indicates
how often v has listened to genre g in the past. This approach is similar to the
category recommender algorithm introduced in [28].

Item-based collaborative filtering baseline: CFi. Similar to CFu, CFi is
a collaborative filtering-based approach, but instead of finding similar users for
the target user u, it aims to find similar items, i.e., music artists SAu

, for the
artists Au that user u has listened to in the past. Then, it predicts the genres
that are assigned to these similar artists as given by:

G̃k
u =

k
argmax
g∈G(SAu )

(∑
a∈Au

∑
s∈Sa

sim(Ga, Gs)

)
(11)

where G(SAu
) are the genres assigned to the similar artists SAu

, Sa is the set
of similar artists for an artist a ∈ Au,

7 and sim(Ga, Gs) is the cosine similarity
between the genre distributions assigned to a and the genres assigned to a similar
artist s ∈ Sa.

Popularity-based baseline: POPu. POPu is a personalized music genre mod-
eling technique, which predicts the k most frequently listened genres in the lis-
tening history of user u. POPu is given by the following equation:

G̃k
u =

k
argmax
g∈Gu

(|GAg,u|) (12)

Here, Gu is the set of genres u has listened to in the past and |GAg,u| denotes
the number of times u has listened to g. Thus, it ranks the genres u has listened
to in the past by popularity.

Time-based baseline: TIMEu. The time-based baseline TIMEu predicts
the k genres that user u has most recently listened to. It is given by:

G̃k
u =

k
argmin
g∈Gu

(tu,g,n) (13)

6 We set the neighborhood size for CFu and CFi to 20.
7 For Au, we consider the set of the 20 artists that u has listened to most frequently.
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where tu,g,n is the time since the last (i.e., the nth) LE of g by u.

4.2 Evaluation Protocol and Metrics

We split the datasets into train and test sets [10]. While doing so, we ensure
that our evaluation protocol preserves the temporal order of the LEs, which
simulates a real-world scenario in which we predict genres of future LEs based
on past ones and not the other way round [25]. This also means that a classic
k-fold cross-validation evaluation protocol is not useful in our setting.

Specifically, we put the most recent 1% of the LEs of each user into the test set
(i.e., LEtest) and keep the remaining LEs for the train set (i.e., LEtrain). We do
not use a classic 80/20 split as the number of LEs per user is large (i.e., on aver-
age, 7,689 LEs per user). Although we only use the most recent 1% of listening
events per user, this process leads to three large test sets with 69,153 listen-
ing events for LowMS, 79,007 listening events for MedMS, and 82,510 listening
events for HighMS. To finally measure the prediction quality of the approaches,
we use the following six well-established performance metrics [5]:

Recall: R@k. Recall is calculated as the number of correctly predicted genres
divided by the number of relevant genres taken from the LEs in the test set
LEtest. It is a measure for the completeness of the predictions and is formally
given by:

R@k =
1

|LEtest|
∑

u,a∈LEtest

|G̃k
u ∩Gu,a|
|Gu,a|

(14)

where G̃k
u denotes the k predicted genres and Gu,a the set of relevant genres of

an artist a in user u’s LEs in the test set.

Precision: P@k. Precision is calculated as the number of correctly predicted
genres divided by the number of predictions k and is a measure of the accuracy
of the predictions. It is given by:

P@k =
1

|LEtest|
∑

u,a∈LEtest

|G̃k
u ∩Gu,a|

k
(15)

We report recall and precision for k = 1 . . . 10 predicted genres in form of
recall/precision plots.

F1-score: F1@k. F1-score is the harmonic mean of recall and precision:

F1@k = 2 · P@k ·R@k

P@k +R@k
(16)

We report the F1-score for k = 5, where it typically reaches its highest value if
10 genres are predicted.
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Mean Reciprocal Rank: MRR@k. MRR is the average of reciprocal ranks
r(g) of all relevant genres in the list of predicted genres:

MRR@k =
1

|LEtest|
∑

u,a∈LEtest

1

|Gu,a|
∑

g∈Gu,a

1

r(g)
(17)

This means that a high MRR is achieved if relevant genres occur at the beginning
of the predicted genre list.

Mean Average Precision: MAP@k. MAP is an extension of the precision
metric by also taking the ranking of the correctly predicted genres into account
and is given by:

MAP@k =
1

|LEtest|
∑

u,a∈LEtest

1

|Gu,a|
k∑

i=1

Reli · P@i (18)

Here, Reli is 1 if the predicted genre at position i is among the relevant genres
(0 otherwise) and P@i is the precision calculated at position i according to
Equation 15.

Normalized Discounted Cumulative Gain: nDCG@k. nDCG is another
ranking-dependent metric. It is based on the Discounted Cumulative Gain (DCG@k)
measure [14], which is defined as:

DCG@k =

k∑
i=1

(
2Reli − 1

log2(1 + i)

)
(19)

where Reli is 1 if the genre predicted for the ith item is relevant (0 otherwise).
nDCG@k is given as DCG@k divided by iDCG@k, which is the highest possible
DCG value that can be achieved if all relevant genres are predicted in the correct
order:

nDCG@k =
1

|LEtest|
∑

u,a∈LEtest

(
DCG@k

iDCG@k

)
(20)

We report MRR, MAP, and nDCG for k = 10 predicted music genres, where
these metrics reach their highest values if 10 genres are predicted.

4.3 Results and Discussion

In this section, we present and discuss our evaluation results. The accuracy re-
sults according to F1@5,MRR@10,MAP@10, and nDCG@10 are shown in Ta-
ble 2 for the five baseline approaches as well as the proposed BLLu and ACTu,a

algorithms. Furthermore, we provide recall/precision plots for k = 1 . . . 10 pre-
dicted genres in Figure 4.

Accuracy of baseline approaches. When analyzing the performance of the
baseline approaches TOP , CFu, CFi, POPu, and TIMEu, we see a clear dif-
ference between the non-personalized and the personalized algorithms. While
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Table 2. Genre prediction accuracy results comparing our BLLu and ACTu,a ap-
proaches with a mainstream-based baseline (TOP ), a user-based collaborative filtering
baseline (CFu), an item-based collaborative filtering baseline (CFi), a popularity-based
baseline (POPu) and a time-based baseline (TIMEu). For all three user groups (i.e.,
LowMS, MedMS, and HighMS), ACTu,a outperforms all other approaches. According
to a t-test with α = .001, “∗∗∗” indicates statistically significant differences between
ACTu,a and all other approaches.

User group Evaluation metric TOP CFu CFi POPu TIMEu BLLu ACTu,a

LowMS

F1@5 .108 .311 .341 .356 .368 .397 .485∗∗∗

MRR@10 .101 .389 .425 .443 .445 .492 .626∗∗∗

MAP@10 .112 .461 .505 .533 .550 .601 .785∗∗∗

nDCG@10 .180 .541 .590 .618 .625 .679 .824∗∗∗

MedMS

F1@5 .196 .271 .284 .292 .293 .338 .502∗∗∗

MRR@10 .146 .248 .264 .274 .272 .320 .511∗∗∗

MAP@10 .187 .319 .336 .351 .365 .419 .705∗∗∗

nDCG@10 .277 .419 .441 .460 .452 .523 .753∗∗∗

HighMS

F1@5 .247 .273 .266 .282 .228 .304 .427∗∗∗

MRR@10 .188 .232 .229 .242 .201 .266 .412∗∗∗

MAP@10 .246 .304 .298 .314 .267 .348 .569∗∗∗

nDCG@10 .354 .413 .402 .429 .357 .462 .642∗∗∗

the non-personalized TOP approach, which predicts the top-k genres of the
mainstream, provides better accuracy results in the HighMS setting than in the
LowMS setting, the personalized CFu, CFi, POPu, and TIMEu algorithms pro-
vide better results in the LowMS setting than in the HighMS setting. Hence, per-
sonalized genre modeling approaches provide better results, the lower the main-
streaminess of the users. Non-personalized genre modeling approaches, however,
have higher performance, the higher the mainstreaminess of the users.

Next, we compare the accuracy of the two collaborative filtering-based meth-
ods, CFu and CFi. Here, the item-based CF variant CFi reaches higher accuracy
estimates in the LowMS and MedMS settings, while the user-based CF variant
CFu provides better performance in the HighMS setting. To better understand
this pattern of results, we provide the average pairwise user similarity in the
form of boxplots in Figure 5. Here, for all three user groups, we calculate the
pairwise similarity between the users via the cosine similarity metric based on
the users’ genre distribution vectors. We see that users in the HighMS setting are
very similar to each other, which explains the good performance of an algorithm
that is based on user similarities, such as CFu.

POPu and TIMEu reach the highest accuracy estimates among the five
baseline approaches. Interestingly, the popularity-based POPu algorithm pro-
vides the best results for the HighMS user group, while the time-based TIMEu

algorithm provides the best results for the LowMS user group. For the MedMS
user group, however, both algorithms reach a comparable accuracy performance,
which shows the importance of both factors, frequency (i.e., popularity) and re-
cency (i.e., time).
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Fig. 4. Recall/precision plots for k = 1 . . . 10 predicted genres of the baselines and
our BLLu and ACTu,a approaches for the three user groups LowMS, MedMS, and
HighMS. ACTu,a achieves the best results in all settings.

Accuracy of BLLu and ACTu,a. We discuss the results of the BLLu and
ACTu,a approaches, which utilize human memory processes as defined by the
cognitive architecture ACT-R in order to model and predict music genre pref-
erences. Specifically, BLLu combines the factors of past usage frequency and
recency via the BLL equation (see Equation 3) and ACTu,a extends BLLu by
also considering the current context via the activation equation (see Equation 6).
In this work, we define the current context by the genres assigned to the artist
that the target user u has listened to most recently.

As expected, when combining the factors of past usage frequency and recency
in the form of BLLu, we can outperform the best performing baseline approaches
POPu and TIMEu in all three settings (i.e., LowMS, MedMS, and HighMS). We
can further improve the accuracy performance when we additionally consider the
current context in the form of ACTu,a. Here, we reach a statistically significant
improvement8 over all other approaches across all evaluation metrics and user
groups. Furthermore, in Figure 6, we present a recall/precision plot showing the

8 According to a t-test with α = .001.
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Fig. 5. Average pairwise user similarity for LowMS, MedMS, and HighMS. We cal-
culate the user similarity using the cosine similarity metric based on the users’ genre
distributions. While users in the LowMS group show a very individual listening behav-
ior, users in the HighMS group tend to listen to similar music genres.

accuracy of ACTu,a for k = 1 . . . 10 predicted genres for LowMS, MedMS,
and HighMS. We observe good results for all three user groups, but especially
in the LowMS setting, in which we are faced with users with a low interest in
mainstream music.

This shows that the proposed ACTu,a algorithm can provide accurate pre-
dictions of music genres listened to in the future for all user groups. Moreover,
since our approach utilizes human memory processes, it is based on psychologi-
cal principles of human intelligence rather than artificial intelligence. We believe
that this theoretical underpinning contributes to the explanation effectiveness of
our approach, as we can fully understand why a specific genre was predicted for
a target user in a given context. To further illustrate this with an example, we
would like to refer back to Figure 3.

In this figure, we have shown the differences between BLLu and ACTu,a for
two predicted genres g1 and g2. Let us assume that these are the top-2 predicted
genres for a target user u. According to BLLu, we know that these genres got
the highest activation levels because u has listened to them very frequently
and recently. When looking at the activation levels calculated by ACTu,a, we
also take the current context into account and, thus, get an indication for the
similarity of g1 and g2 to the genres assigned to the most recently listened artist
a of user u. In our example, genre g2 is strongly related to the current context,
while genre g1 only has a weak relation to it. Taken together, with our ACTu,a

approach, we can easily explain genre prediction results according to three simple
factors that are relevant for human memory processes according to the cognitive
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Fig. 6. Recall/precision plot of our ACTu,a approach for k = 1 . . . 10 predicted genres
for the three user groups LowMS, MedMS, and HighMS. We observe good prediction
accuracy results for ACTu,a in all settings, but especially for LowMS. This shows that
our approach based on human memory processes is especially useful for predicting the
music genre preferences of users with low interest in mainstream music.

architecture ACT-R: past usage frequency, past usage recency, and similarity to
current context.

5 Discussion of Model Extensions

Besides the previously discussed three main factors for modeling music genre
preferences, we now present potential model extensions to further enhance the
transparency of our approach based on related music recommendation litera-
ture [43]. We first present the individual components comprising feature sim-
ilarity, associated rewards, and randomness in behavior. We then provide the
adapted activation equation and discuss further alterations of components.

Partial matching component. The partial matching component [3] is an-
other core component of ACT-R’s activation equation [8]. The basic idea of
partial matching revolves around retrieval based on similarity. Concerning mu-
sic preferences, consider the case of two genres with mostly distinct artists but
similar sounds (e.g., symphonic vs power metal), and a user with a strong pref-
erence to one genre but so far almost no listening events to the other. We can
reasonably hypothesize that such a user would also show a (weaker but still
noticeable) preference to the so far unexplored genre. Hence, genres can be re-
trieved even when they do not fully match the user’s historical preferences, i.e.,

only partially matches. We can predict the top-k G̃k
u based on partial matching

of a user’s preference by:

G̃k
u =

k
argmax

g∈G

∑
f∈Fu

P ·Mf,g (21)
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where Fu is the specification for the retrieval, i.e., a set of preferred features of the
user u. Example features are acoustics or lyrics that are associated with tracks,
artists, and genres. A user can either explicitly set Fu, or it can automatically be
extracted from the user’s historical LEs. Mf,g represents the match similarities
between a particular feature f and genre g:

Mf,g = sim(f, g) (22)

where sim(·, ·) is an arbitrary similarity function. The factor P represents the
match scale and is by default set to a constant value of 1 [8]. If sim(·, ·) is
also modeled as a multiplication of values associated with f and g, then par-
tial matching is equivalent to the dot product between the specification f and
genre g. Moreover, by dynamically adapting P based on f and g, other well-
established functions, such as the cosine similarity can be used.

In comparison to base-level and associative activation, partial matching can
be seen as content-based retrieval and allows unexplored genres to be retrieved
(e.g., in a cold-start setting [30]). Herein, it could use both user-to-item and
item-to-item based recommendation.

Valuation component. Besides the core components, several extensions have
been proposed, such as aggregate retrieval [32] or hybrid approaches [61]. In
the following, we discuss one particular extension, i.e., the valuation component,
that we deem relevant for modeling music preferences [12]. We predict the top-k

genres G̃k
u based on their valuation Vu,g(n) at the nth LE of genre g by user u:

G̃k
u =

k
argmax
g∈Gu

Vu,g(n) (23)

where valuations are learned according to the following equation:

Vu,g(n) = Vu,g(n− 1) + α(Ru,g(n)− Vu,g(n− 1)) (24)

The valuation Vu,g(n) is based on the valuation Vu,g(n − 1) of the previous LE
(i.e., n − 1) and updated with the associated reward Ru,g(n) weighted by the
learning rate α. The initial valuation is determined by Vu,g(0) and can be set to
Vu,g(0) = 0 to specify that users do not have prior preferences. Ru,g(n) is the
reward that user u associates with the genre g at nth LE. The reward can be,
for instance, modeled according to the listening time of LEs (either total time or
ratio of track length). Thus, longer LEs would result in greater valuations (i.e.,
a positive signal). Moreover, very short LEs could even be assigned a negative
reward, as such events could indicate skipping (i.e., a negative signal). Alter-
natively, we could set Ru,g(n) = 1 to learn the familiarity with a given genre.
Hence, the valuation component would retrieve equivalent genres as POPu if
used exclusively (but the scores would differ depending on the learning rate).
Furthermore, the reward could also depend on explicit signals, such as ratings
or up- and downvotes, if such data is available.

Noise. To account for randomness in behavior, a noise value ϵg can be consid-
ered for the activation, which is a (typically small) random number. Hence, the
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activation level for each genre g ∈ G deviates slightly by chance, therefore, a
random genre is predicted:

G̃k
u =

k
argmax

g∈G
ϵg (25)

Adapted activation equation. If all components are taken together, the
adapted activation equation becomes:

A(g, u, a, n) = B′(g, u) +
∑
c∈Ga

Wc · Sc,g +
∑
f∈Fu

P ·Mf,g + Vu,g(n) + ϵg (26)

Hence, the activation depends on several additive components, where the genres
with the highest overall activation is retrieved:

G̃k
u =

k
argmax

g∈G
A(g, u, a, n) (27)

Finally, we want to emphasize that alternative implementations of the com-
ponents are possible. For instance, the base level component can be simplified

as B(g, u) = ln

(
n√
tu,g,0

)
[1]. Thus, the adapted equation only considers the

frequency (i.e., the total number of retrievals n), normalized by recency of initial
retrieval (i.e, the time since the first retrieval tu,g,0). Similarly, the associative
component can also be modeled regarding probabilities of certain outcomes [12],
e.g., whether a particular genre is likely listened to in a session. We, therefore,
see potential for additional model extensions in future work.

6 Conclusion and Future Work

In this chapter, we extended our previous work [23], and discussed the use of
cognitive models for context-aware prediction of users’ music genre preferences.
Based on relevant literature, we derived the theoretical underpinnings of BLLu

and ACTu,a, two music genre preference modeling, and prediction approaches
based on the human memory module of the cognitive architecture ACT-R. While
BLLu utilizes the BLL equation of ACT-R in order to model the factors of past
usage frequency (i.e., popularity) and recency (i.e., time), ACTu,a integrates
the activation equation of ACT-R to also incorporate the current context. We
defined this context as the genres assigned to the most recently listened artist
of the target user.

Using a dataset gathered from the music platform Last.fm, we evaluated
BLLu and ACTu,a against a mainstream-based approach TOP , a user-based
CF approach CFu, an item-based CF approach CFi, a popularity-based ap-
proach POPu as well as a time-based approach TIMEu. We used six evaluation
metrics (i.e., recall, precision, F1-score, MRR, MAP, and nDCG) in three evalu-
ation settings in which the evaluated users differed in terms of their inclination
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to mainstream music (i.e., LowMS, MedMS, and HighMS user groups). Our eval-
uation results show that both BLLu and ACTu,a outperform the five baseline
methods in all three settings; ACTu,a even does so in a statistically significant
manner. Furthermore, we find that especially the current context is critical when
aiming for accurate genre predictions. Finally, in this chapter, we also discussed
potential model extensions by surveying additional components of ACT-R.

Summed up, we have shown that human memory processes in the form of
ACT-R’s activation equation can be effectively used for context-aware genre
preference modeling and prediction. In addition, we also reviewed the literature
in the field of cognitive-inspired recommender systems, and discussed poten-
tial model extensions of additional ACT-R components. By following such a
psychology-inspired approach, we also believe that we can model a user’s prefer-
ences transparently, in contrast to, e.g., deep learning-based approaches based on
latent user representations. Therefore, our approach could be useful to produce
more transparent and explainable music recommender systems.

Future work. In addition to the ACT-R model extensions presented in Sec-
tion 5, we plan to utilize the procedural memory processes of ACT-R. As, for
instance, done in the SNIF-ACT model [11,42], we will define so-called produc-
tion rules in order to transfer the user’s preferences into actual music recom-
mendation strategies. By making these rules transparent to the user, we aim to
contribute to research on transparent recommender systems that create explain-
able recommendations based on psychological models [34].

As another research strand, we want to investigate fairness in the form of
gender bias [33], confirmation bias [17], or popularity bias [26] in the field of
cognitive- and psychology-informed recommender systems [34]. For example, we
plan to study if recommendations generated using ACT-R are less prone to
biased results than alternative, purely data-driven algorithms.

Finally, we will explore the effectiveness of other cognitive models in the
domain of music recommender systems. For example, we plan to leverage a
cognitive model of human category learning [35] to recommend music that fits
a user’s current focus, similar to [16,55], who used that model to tailor learning
resources to a learner’s current task.

Reproducibility. To foster the reproducibility of our research, we use the pub-
licly available LFM-1b dataset (see Section 3). Furthermore, we provide the
source code of our approach as part of our TagRec framework [19,58].
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