A Study on Accuracy, Miscalibration, and Popularity Bias in Recommendations

Dominik Kowald, Gregor Mayr, Markus Schedl, Elisabeth Lex

ECIR 2023 - BIAS Workshop 2 - 6 April 2023

Dominik Kowald, Know-Center and TU Graz

BIAS@ECIR'2023

Motivation

- Recommender systems suffer from an inconsistency in recommendation performance across different user groups [AMBM19, ETA⁺18]
- Two examples:
 - Varying recommendation accuracy across different user groups → unfair treatment of users whose preferences are not in the mainstream of a community [KSL20, KMZ⁺21]
 - Inconsistencies between input data and recommendations generated \rightarrow recommendations that are either popularity-biased (**popularity lift**) or not match the users' interests (**miscalibration**)
- Research objectives:
 - **O1:** Investigate relationship between popularity lift, miscalibration and accuracy for different **users**
 - O2: Inspect recommendation inconsistency for different genres

イロト 不得 トイラト イラト 二日

Defining Recommendation Inconsistency

- Accuracy differences across user groups [KSL20]
 - Mean Absolute Error (MAE): rating prediction (lower is better)
 - **Recall and Precision**: top-*n* recommendation (higher is better)
- Miscalibration (MC) [Ste18, LSMB20]
 - Kullback-Leibler (KL) divergence between genre distributions in profiles p(c|u) and recommendations q(c|u)
 - $KL(p||q) = \sum_{c \in C} p(c|u) \log \frac{p(c|u)}{q(c|u)}$
 - 1 means miscalibrated and 0 means calibrated recommendations
- Popularity lift (PL) [AMBM19]
 - Compare group average popularity between profiles ($GAP_p(g)$) and recommendations ($GAP_q(g)$)

•
$$PL(g) = \frac{GAP_q(g) - GAP_p(g)}{GAP_p(g)}$$

• PL(g) > 0 means too popular recommendations for g and PL(g) < 0 means too unpopular recommendations, 0 is perfect

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Datasets

- Three datasets from [KL22] extended with genre information:
 - Last.fm (LFM): LFM-1b [Sch16] dataset provided by JKU Linz
 - In case of Last.fm, we need to map user-generated tags assigned to artists to genres in the AllMusic database
 - MovieLens (ML): Movielens 1M dataset provided by GroupLens
 - MyAnimeList (MAL): provided by Kaggle
 - For ML and MAL, the datasets already contain genres
- User groups
 - 1k users with lowest (LowPop), with medium (MedPop) and with highest (HighPop) inclination to popularity (i.e., fraction of popular items in the user profile)
 - Available via Zenodo: https://doi.org/10.5281/zenodo.7428435

Dataset	U	I	R C	R / U	R / I	Sparsity	R-range
LFM	3,000	131,188	1,417,791 20	473	11	0.996	[1-1,000]
ML	3,000	3,667	675,610 18	225	184	0.938	[1-5]
MAL	$3,\!000$	9,450	649,814 44	216	69	0.977	[1 - 10]

Method

Recommendation Algorithms and Evaluation Protocol

- Python-based open-source framework Surprise
- Rating prediction \rightarrow predict listening counts in Last.fm
- $\bullet~\text{Top-n} \rightarrow 10$ items with highest predicted ratings
- 5 recommendation algorithms:
 - 1 rating-prediction approach: UserItemAvg [Hug20]
 - 2 knn-based approaches: UserKNN, UserKNNAvg [KSL20]
 - 1 matrix factorization-based approach: NMF [LZXZ14]
 - 1 scalable co-clustering-based approach: CoClustering [GM05]
- Evaluation protocol
 - Random 80/20 train-test split
 - Five-fold cross validation
 - Pairwise t-test between LowPop and MedPop / LowPop and HighPop
- Available via Github:

https://github.com/domkowald/FairRecSys

O1: MAE, MC, and PL for Different Users

	Data	LFM			ML			MAL		
Algorithm	Metric	MAE	МС	PL	MAE	МС	PL	MAE	МС	PL
	LowPop	48.02*	0.52*	1.28	0.74*	0.78*	0.70*	0.99*	0.95*	1.12*
UserItemAvg	MedPop	38.48	0.48	1.61	0.71	0.71	0.42	0.96	0.73	0.42
	HighPop	45.24	0.42	1.35	0.69	0.63	0.24	0.97	0.64	0.15
	LowPop	54.32*	0.51*	0.52	0.80*	0.75*	0.64*	1.37*	0.92*	0.74*
UserKNN	MedPop	46.76	0.50	0.82	0.75	0.69	0.37	1.34	0.72	0.22
	HighPop	49.75	0.45	0.80	0.72	0.62	0.20	1.31	0.63	0.08
	LowPop	50.12*	0.49*	0.35	0.76*	0.78*	0.49*	1.00*	0.90*	0.54*
UserKNNAvg	MedPop	40.30	0.47	0.61	0.73	0.70	0.33	0.95	0.73	0.24
	HighPop	46.39	0.42	0.64	0.70	0.61	0.20	0.95	0.64	0.11
	LowPop	42.47*	0.54*	0.10	0.75*	0.78*	0.57*	1.01*	0.91*	0.87*
NMF	MedPop	34.03	0.52	0.17	0.72	0.71	0.37	0.97	0.72	0.35
	HighPop	41.14	0.48	0.33	0.70	0.63	0.22	0.95	0.63	0.13
	LowPop	52.60*	0.52*	0.68	0.74*	0.77*	0.70*	1.00*	0.90*	1.10*
Co-Clustering	MedPop	40.83	0.51	1.04	0.71	0.70	0.43	0.96	0.72	0.42
	HighPop	47.03	0.45	0.99	0.68	0.62	0.25	0.98	0.63	0.16

• MAE (Recall/Precision) aligned with MC & PL, except PL for LFM

イロト イボト イヨト イヨト

Results

O1: Popular Items in the User Profiles Across Groups

Repeat consumption patterns in LFM [KSL20, KLS18]

Dominik Kowald, Know-Center and TU Graz

BIAS@ECIR'2023

э

∃ >

Results

O2: Recommendation Inconsistency (MC) on Genre Level

BIAS@ECIR'2023

э

Results

O2: MAL "Hentai" Genre Leads to LowPop Inconsistency

Dominik Kowald, Know-Center and TU Graz

BIAS@ECIR'2023

э

Conclusion and Future Work

- **O1**: LowPop users get least accurate, most miscalibrated and most popularity-biased recommendations
- **O2:** Particular genres contribute to inconsistency in recommendation performance ("Hentai" for LowPop in MAL)
- We find a connection between our recommendation inconsistency definitions of accuracy, miscalibration and popularity lift

• Future Work

- Use insights for popularity bias mitigation strategies, e.g.,
 - Calibration-based re-ranking for genres that contribute to miscalibration [AMB⁺21]
 - Personalized re-ranking for users of groups with high popularity lift [ABM19, AK11]
- Investigate further **popularity bias evaluation metrics** for repeat consumption patterns, e.g., weighted popularity lift
- Study inconsistency in other domains (e.g., e-commerce) using novel algorithms (e.g., deep learning)

Thank you! Questions?

Contact: dkowald [AT] know-center [DOT] at Data: https://doi.org/10.5281/zenodo.7428435 Code: https://github.com/domkowald/FairRecSys Paper: https://arxiv.org/pdf/2303.00400.pdf

Poster/demo on Tuesday \rightarrow "Uptrendz: API-Centric Real-Time Recommendations in Multi-Domain Settings"

<ロト < 回ト < 回ト < 回ト < 回ト -

References I

- Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher, Managing popularity bias in recommender systems with personalized re-ranking, The thirty-second international flairs conference, 2019.
- Gediminas Adomavicius and YoungOk Kwon, *Improving aggregate recommendation diversity using ranking-based techniques*, IEEE Transactions on Knowledge and Data Engineering **24** (2011), no. 5, 896–911.
- Himan Abdollahpouri, Masoud Mansoury, Robin Burke, Bamshad Mobasher, and Edward Malthouse, User-centered evaluation of popularity bias in recommender systems, Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, 2021, pp. 119–129.

3

References II

- Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher, The impact of popularity bias on fairness and calibration in recommendation, arXiv preprint arXiv:1910.05755 (2019).
- Michael D Ekstrand, Mucun Tian, Ion Madrazo Azpiazu, Jennifer D Ekstrand, Oghenemaro Anuyah, David McNeill, and Maria Soledad Pera, All the cool kids, how do they fit in?: Popularity and demographic biases in recommender evaluation and effectiveness, Conference on fairness, accountability and transparency, PMLR, 2018, pp. 172–186.
- Thomas George and Srujana Merugu, *A scalable collaborative filtering framework based on co-clustering*, Fifth IEEE International Conference on Data Mining (ICDM'05), IEEE, 2005, pp. 4–pp.

イロト イボト イヨト イヨト

References III

- Nicolas Hug, *Surprise: A python library for recommender systems*, Journal of Open Source Software **5** (2020), no. 52, 2174.
- Dominik Kowald and Emanuel Lacic, Popularity bias in collaborative filtering-based multimedia recommender systems, Advances in Bias and Fairness in Information Retrieval (Cham) (Ludovico Boratto, Stefano Faralli, Mirko Marras, and Giovanni Stilo, eds.), Springer International Publishing, 2022, pp. 1–11.
- Dimitrios Kotzias, Moshe Lichman, and Padhraic Smyth, Predicting consumption patterns with repeated and novel events, IEEE Transactions on Knowledge and Data Engineering **31** (2018), no. 2, 371–384.

References IV

- Dominik Kowald, Peter Muellner, Eva Zangerle, Christine Bauer, Markus Schedl, and Elisabeth Lex, Support the underground: characteristics of beyond-mainstream music listeners, EPJ Data Science 10 (2021), no. 1, 14.
- Dominik Kowald, Markus Schedl, and Elisabeth Lex, The unfairness of popularity bias in music recommendation: A reproducibility study, European conference on information retrieval, Springer, 2020, pp. 35–42.
 - Kun Lin, Nasim Sonboli, Bamshad Mobasher, and Robin Burke, *Calibration in collaborative filtering recommender systems: A user-centered analysis*, Proceedings of the 31st ACM Conference on Hypertext and Social Media (New York, NY, USA), HT '20, Association for Computing Machinery, 2020, p. 197–206.

イロト 不得下 イヨト イヨト

References V

- Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu, An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems, IEEE Transactions on Industrial Informatics 10 (2014), no. 2, 1273–1284.
- Markus Schedl, The Ifm-1b dataset for music retrieval and recommendation, Proceedings of the 2016 ACM on international conference on multimedia retrieval, 2016, pp. 103–110.
- Harald Steck, Calibrated recommendations, Proceedings of the 12th ACM Conference on Recommender Systems (New York, NY, USA), RecSys '18, Association for Computing Machinery, 2018, p. 154–162.